Answer:
-84i - 12i
Step-by-step explanation:
The distributive property is: a(b+c) = ab + ac
In this case, we have -6i(-14i+2)
-6i = a
-14i = b
2 = c
-6i(-14i+2) = -6i(-14i) + -6i(2)
= 84i^2 - 12i
= -84 - 12i
Answer:
6
Step-by-step explanation:
subtract 2 from2 equal zero
add 2and 4 together get six
zero divided by any non-zero number gives zero
multiply 3 times 4 gets 12
0+12/2
divide 12 by 2 equal six
0+6
zero 0 and 6 to get 6
6
Answer:
1. 9 < s < 17
2. 5 < MN < 19
3. AD > BD
Step-by-step explanation:
1. The triangle inequality tells you the sum of any two sides of a triangle must exceed the length of the other side. (Some versions say, "must be not less than ..." rather than "must exceed.") In practice, this means two things:
- the sum of the shortest two sides is greater than the length of the longest side
- the length of any side lies between the sum and the difference of the other two sides
Here, we can use the latter fact to write the desired inequality. The difference of the given sides is 13 -4 = 9; their sum is 13 +4 = 17. The third side must lie between 9 and 17. If that side length is designated "s", then ...
9 < s < 17
(If you don't mind a "triangle" that looks like a line segment, you can use ≤ instead of <.)
__
2. Same as (1) using different numbers.
12 -7 < MN < 12 +7
5 < MN < 19
__
3. Side CD is congruent to itself, and side CA is shown congruent to side CB. This means the requirements of the Hinge Theorem are met. That theorem tells you the longer side is opposite the greater angle:
AD > BD
Answer:
2m
Step-by-step explanation:
2 * 1.5 = 3, the total height
we know that there are three metres total and 1 is half the other, so we divide 3m by 3 = 1m, the height of B,
as A = 2B, A = 2m
Answer:
search-icon-image
Class 9
>>Maths
>>Quadrilaterals
>>Quadrilaterals and Their Various Types
>>In Fig. 6.43, if PQ PS, PQ∥ SR, SQR = 2
Question
Bookmark
In Fig. 6.43, if PQ⊥PS,PQ∥SR,∠SQR=28
0
and ∠QRT=65
0
, then find the values of x and y.
463685
expand
Medium
Solution
verified
Verified by Toppr
Given, PQ⊥PS,PQ∥SR,∠SQR=28
∘
,∠QRT=65
∘
According to the question,
x+∠SQR=∠QRT (Alternate angles as QR is transversal.)
⇒x+28
∘
=65
∘
⇒x=37
∘
Also ∠QSR=x
⇒∠QSR=37
∘
Also ∠QRS+∠QRT=180
∘
(Linear pair)
⇒∠QRS+65
∘
=180
∘
⇒∠QRS=115
∘
Now, ∠P+∠Q+∠R+∠S=360
∘
(Sum of the angles in a quadrilateral.)
⇒90
∘
+65
∘
+115
∘
+∠S=360
∘
⇒270
∘
+y+∠QSR=360
∘
⇒270
∘
+y+37
∘
=360
∘
⇒307
∘
+y=360
∘
⇒y=53
∘
Step-by-step explanation:
please mark me as brainlist please