Answer:
x > 4/33
Step-by-step explanation:
(-4 +8x) +3> x/-4
8x - 1 > x/-4
-32x + 4 < x
4 < 33x
4/33 < x
Answer:
a. H0:μ1≥μ2
Ha:μ1<μ2
b. t=-3.076
c. Rejection region=[tcalculated<−1.717]
Reject H0
Step-by-step explanation:
a)
As the score for group 1 is lower than group 2,
Null hypothesis: H0:μ1≥μ2
Alternative hypothesis: H1:μ1<μ2
b) t test statistic for equal variances
t=(xbar1-xbar2)-(μ1-μ2)/sqrt[{1/n1+1/n2}*{((n1-1)s1²+(n2-1)s2²)/n1+n2-2}
t=63.3-70.2/sqrt[{1/11+1/13}*{((11-1)3.7²+(13-1)6.6²)/11+13-2}
t=-6.9/sqrt[{0.091+0.077}{136.9+522.72/22}]
t=-3.076
c. α=0.05, df=22
t(0.05,22)=-1.717
The rejection region is t calculated<t critical value
t<-1.717
We can see that the calculated value of t-statistic falls in rejection region and so we reject the null hypothesis at 5% significance level.
Answer:
The area decreases by 1155.52 square meters
Step-by-step explanation:
a = pi * r ^ 2
d = 2 * r
r = d / 2
r = 96/2
r = 48
a1 = 3.14 * 48 ^ 2
a1 = 7234.56 square meters.
r = 88/2
r = 44
a2 = 3.14 * 44 ^ 2
a2 = 6079.04 square meters.
now we calculate the difference
a1 - a2 = 7234.56 - 6079.04
= 1155.52 square meters
U = vw + z
vw + z = u |subtract z from both sides
vw = u - z |divide both sides by w
v = (u - z)/w
Answer:
The angle measures of Δ VUW are m∠V = 60°, m∠U = 90°, m∠W = 30° ⇒ last answer
Step-by-step explanation:
In any triangle if the sum of the squares of the shortest two sides is equal to the square of the longest side, then the triangle is a right triangle and the angle opposite to the longest side is the right angle
In Δ VUW
∵ WV = 6 cm
∵ WU = 3
cm
∵ UV = 3 cm
- Use the rule above tho check if it is a right Δ or not
∴ The longest side is WV
∴ The shortest two sides are WU and UV
∵ (WV)² = (6)² = 36
∵ (WU)² + (UV)² = (3
)² + (3)² = 27 + 9 = 36
∴ (WV)² = (WU)² + (UV)²
- That means ∠U which opposite to WV is a right angle
∴ Δ VUW is a right triangle at ∠U
∴ m∠U = 90°
Let us use the trigonometry ratios to find m∠W and m∠V
→ sin Ф =
∵ UV is the opposite side of ∠W
∵ WV is the hypotenuse
∵ sin(∠W) = 
∵ sin(∠W) = 
- Use
to find ∠W
∴ ∠W = 
∴ m∠W = 30°
∵ WU is the opposite side of ∠V
∵ WV is the hypotenuse
∵ sin(∠V) = 
∵ sin(∠V) = 
- Use
to find ∠V
∴ ∠V = 
∴ m∠V = 60°
The angle measures of Δ VUW are m∠V = 60°, m∠U = 90°, m∠W = 30°