Answer:
hi there ☺️
Here we will use algebra to find three consecutive integers whose sum is 345. We start by assigning X to the first integer. Since they are consecutive, it means that the 2nd number will be X + 1 and the 3rd number will be X + 2 and they should all add up to 345. Therefore, you can write the equation as follows:
(X) + (X + 1) + (X + 2) = 345
To solve for X, you first add the integers together and the X variables together. Then you subtract three from each side, followed by dividing by 3 on each side. Here is the work to show our math:
X + X + 1 + X + 2 = 345
3X + 3 = 345
3X + 3 - 3 = 345 - 3
3X = 342
3X/3 = 342/3
X = 114
Which means that the first number is 114, the second number is 114 + 1 and the third number is 114 + 2. Therefore, three consecutive integers that add up to 345 are 114, 115, and 116.
114 + 115 + 116 = 345
We know our answer is correct because 114 + 115 + 116 equals 345 as displayed above.
Step-by-step explanation:
pls rate me the brainiest
First you plug in the missing values
5(8×5/8+3×3-5×2) = 20
Answer:
I was expecting a mirror but okay
23,307,609 that is the answer
I’m guessing you mean like this.
2x+4y+5x+8y.
2x and 5x are like terms because the x’s are alike. If you add 2+5, the answer is 7. So therefore 2x+5x=7x.
4y and 8y are like terms because the y’s are alike. So the answer to 4y+8y would be 12y.
If you need extra help, give me a problem and I will help you solve it.