1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
galben [10]
3 years ago
13

Find (f • g) when f(x) = x^2 + 5x + 6 and g(x) = 1/x+3

Mathematics
2 answers:
Nikitich [7]3 years ago
8 0

Answer:

option D

Step-by-step explanation:

f(x) = x^2 + 5x + 6

g(x)= \frac{1}{x+3}

(fog)(x) = f(g(x))

Plug in g(x) in f(x)

We plug in 1/x+3 in the place of x  in f(x)

f(g(x))= f(\frac{1}{x+3})= (\frac{1}{x+3})^2 + 5(\frac{1}{x+3}) + 6

To simplify it we take LCD

LCD is (x+3)(x+3)

\frac{1}{(x+3)(x+3)}+5\frac{1*(x+3)}{(x+3)(x+3)}+\frac{6(x+3)(x+3)}{(x+3)(x+3)}

\frac{1}{x^2+6x+9}+\frac{(5x+15)}{x^2+6x+9}+\frac{6x^2+36x+54}{x^2+6x+9}

All the denominators are same so we combine the numerators

\frac{1+5x+15+6x^2+36x+54}{x^2+6x+9}

\frac{6x^2+41x+70}{x^2+6x+9}

Option D is correct

spayn [35]3 years ago
4 0

Answer:

The correct option choice is D. 6x^2 + 41x + 70 / x^2 +6x + 9


You might be interested in
Choose the function table that matches the given rule<br> Rule:output=input -2
kirill [66]

Answer:

option B

Step-by-step explanation:

Rule:output=input -2

LEts analyze the table

we use the input and apply the rule to get the output

LEts subtract 2 from input to get the output

Input             Rule (input -2 )            Output

-3                         -3-2                          -5

-7                         -7-2                          -9

6                          6-2                            4

Option B matches with our table

   

7 0
3 years ago
Q 16 Two numbers are in the ratio 3 : 17. If the first is 6, what is the other?
liberstina [14]

Answer:

D 34

Step-by-step explanation:

i hope you understand

3 0
3 years ago
6x - 8 ≤ 184 <br> i need answer for test corrections
jekas [21]
I hope this helps.....

Explanation:
I took this in 9th grade so I know how to do this kind of stuff

5 0
3 years ago
What is the answer 7÷5,631 eqall
otez555 [7]
7/5,631=0.0012431185
3 0
3 years ago
Derivative of tan(2x+3) using first principle
kodGreya [7K]
f(x)=\tan(2x+3)

The derivative is given by the limit

f'(x)=\displaystyle\lim_{h\to0}\frac{f(x+h)-f(x)}h

You have

\displaystyle\lim_{h\to0}\frac{\tan(2(x+h)+3)-\tan(2x+3)}h
\displaystyle\lim_{h\to0}\frac{\tan((2x+3)+2h)-\tan(2x+3)}h

Use the angle sum identity for tangent. I don't remember it off the top of my head, but I do remember the ones for (co)sine.

\tan(a+b)=\dfrac{\sin(a+b)}{\cos(a+b)}=\dfrac{\sin a\cos b+\cos a\sin b}{\cos a\cos b-\sin a\sin b}=\dfrac{\tan a+\tan b}{1-\tan a\tan b}

By this identity, you have

\tan((2x+3)+2h)=\dfrac{\tan(2x+3)+\tan2h}{1-\tan(2x+3)\tan2h}

So in the limit you get

\displaystyle\lim_{h\to0}\frac{\dfrac{\tan(2x+3)+\tan2h}{1-\tan(2x+3)\tan2h}-\tan(2x+3)}h
\displaystyle\lim_{h\to0}\frac{\tan(2x+3)+\tan2h-\tan(2x+3)(1-\tan(2x+3)\tan2h)}{h(1-\tan(2x+3)\tan2h)}
\displaystyle\lim_{h\to0}\frac{\tan2h+\tan^2(2x+3)\tan2h}{h(1-\tan(2x+3)\tan2h)}
\displaystyle\lim_{h\to0}\frac{\tan2h}h\times\lim_{h\to0}\frac{1+\tan^2(2x+3)}{1-\tan(2x+3)\tan2h}
\displaystyle\frac12\lim_{h\to0}\frac1{\cos2h}\times\lim_{h\to0}\frac{\sin2h}{2h}\times\lim_{h\to0}\frac{\sec^2(2x+3)}{1-\tan(2x+3)\tan2h}

The first two limits are both 1, and the single term in the last limit approaches 0 as h\to0, so you're left with

f'(x)=\dfrac12\sec^2(2x+3)

which agrees with the result you get from applying the chain rule.
7 0
3 years ago
Other questions:
  • Can you help me please ❤️✨
    9·1 answer
  • What is the answer help
    9·1 answer
  • 4 less than a number is more than 3
    14·2 answers
  • What are the 2 shorter sides of a right triangle called
    9·2 answers
  • Randall has an account balance of $675.54 in a savings account that earns interest at a rate of 2.5% compounded twice a year. If
    15·1 answer
  • Solve.
    7·1 answer
  • A photo is 4 inches tall and 6 inches where to be proportional how tall will the photo need to be if it were 10 inches wide
    14·1 answer
  • Some one please help me thx
    11·1 answer
  • Lots of points please help!! tysm!! image explains everything ​
    8·1 answer
  • 1 (9x+2)=4+ 2 (6x+4)<br> 3 3
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!