Answer:
0.4
Step-by-step explanation:
Let X be the random variable that represents the number of consecutive days in which the parking lot is occupied before it is unoccupied. Then the variable X is a geometric random variable with probability of success p = 2/3, with probability function f (x) = [(2/3)^x] (1/3)
Then the probability of finding him unoccupied after the nine days he has been found unoccupied is:
P (X> = 10 | X> = 9) = P (X> = 10) / P (X> = 9). For a geometric aeatory variable:
P (X> = 10) = 1 - P (X <10) = 0.00002
P (X> = 9) = 1 - P (X <9) = 0.00005
Thus, P (X> = 10 | X> = 9) = P (X> = 10) / P (X> = 9) = 0.00002 / 0.00005 = 0.4.
The aNSWER IS 41..AM I RIGHT?
Add up the x points and divided by 2
same to go for the y points
so the and is (4,-2)