Answer:
6.32
Step-by-step explanation:
divide 18.96 by 3 and the outcome is 6.32
What this question simply asks about is you write the numbers it gave you in only one digit by 10 to the power of n. Where n represents the number of shifts of the decimal point.
And to get this number to be one digit, then you have to approximate.
To approximate; you should always consider that less than 5 counts zero and 5 or more counts+1.
Example:
5.3 is approximately 5
5.5 is approx. 6
5.9 is also approx. 6
and so on.
So the final answers are;
1) 4*10^13
2) 5*10^-11
Please note that 10^positive integer will cause the decimal point to move to the right which means a number greater than 1, usually, while 10^negative integer means number smaller than 1, usually.
Hope this helps.
Given the next quadratic function:

to sketch its graph, first, we need to find its vertex. The x-coordinate of the vertex is found as follows:

where <em>a</em> and <em>b</em> are the first two coefficients of the quadratic function. Substituting with a = 2 and b = 3, we get:

The y-coordinate of the vertex is found by substituting the x-coordinate in the quadratic function, as follows:

The factorization indicates that the curve crosses the x-axis at the points (-2, 0) and (1/2, 0). We also know that the curve crosses the y-axis at (0,-2). Connecting these points and the vertex (-0.75, -3.125) with a U-shaped curve, we get:
Complete question:
He amount of time that a customer spends waiting at an airport check-in counter is a random variable with mean 8.3 minutes and standard deviation 1.4 minutes. Suppose that a random sample of n equals 47 customers is observed. Find the probability that the average time waiting in line for these customers is
a) less than 8 minutes
b) between 8 and 9 minutes
c) less than 7.5 minutes
Answer:
a) 0.0708
b) 0.9291
c) 0.0000
Step-by-step explanation:
Given:
n = 47
u = 8.3 mins
s.d = 1.4 mins
a) Less than 8 minutes:

P(X' < 8) = P(Z< - 1.47)
Using the normal distribution table:
NORMSDIST(-1.47)
= 0.0708
b) between 8 and 9 minutes:
P(8< X' <9) =![[\frac{8-8.3}{1.4/ \sqrt{47}}< \frac{X'-u}{s.d/ \sqrt{n}} < \frac{9-8.3}{1.4/ \sqrt{47}}]](https://tex.z-dn.net/?f=%20%5B%5Cfrac%7B8-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%3C%20%5Cfrac%7BX%27-u%7D%7Bs.d%2F%20%5Csqrt%7Bn%7D%7D%20%3C%20%5Cfrac%7B9-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%5D)
= P(-1.47 <Z< 6.366)
= P( Z< 6.366) - P(Z< -1.47)
Using normal distribution table,

0.9999 - 0.0708
= 0.9291
c) Less than 7.5 minutes:
P(X'<7.5) = ![P [Z< \frac{7.5-8.3}{1.4/ \sqrt{47}}]](https://tex.z-dn.net/?f=%20P%20%5BZ%3C%20%5Cfrac%7B7.5-8.3%7D%7B1.4%2F%20%5Csqrt%7B47%7D%7D%5D%20)
P(X' < 7.5) = P(Z< -3.92)
NORMSDIST (-3.92)
= 0.0000