Answer:
<em>It has been given that Rectangle Q has an area of 2 square units.</em>
<em>Thea Drew a scaled version of Rectangle Q and marked it as R.</em>
<em>As you must keep in mind If we draw scaled copy of pre-image, then the two images i.e Pre-image and Image are similar.</em>
<em>As you have not written what is the scale factor of transformation</em>
<em>Suppose , Let the Scale factor of transformation= k</em>
<em>Rectangle Q = Pre -image, Rectangle R= Image</em>
<em>If, Pre-Image < Image , then scale factor is k >1.</em>
<em>But If, Pre-Image > Image , then Scale factor will be i.e lies between, 0<k<1.</em>
let's firstly convert the mixed fractions to improper fractions, and then add them up.
![\bf \stackrel{mixed}{8\frac{1}{2}}\implies \cfrac{8\cdot 2+1}{2}\implies \stackrel{improper}{\cfrac{17}{2}}~\hfill \stackrel{mixed}{7\frac{2}{3}}\implies \cfrac{7\cdot 3+2}{3}\implies \stackrel{improper}{\cfrac{23}{3}} \\\\[-0.35em] ~\dotfill\\\\ \cfrac{17}{2}+\cfrac{23}{3}\implies \stackrel{\textit{using the LCD of 6}}{\cfrac{(3)17~~+~~(2)23}{6}}\implies \cfrac{51+46}{6}\implies \cfrac{97}{6}\implies 16\frac{1}{6}](https://tex.z-dn.net/?f=%5Cbf%20%5Cstackrel%7Bmixed%7D%7B8%5Cfrac%7B1%7D%7B2%7D%7D%5Cimplies%20%5Ccfrac%7B8%5Ccdot%202%2B1%7D%7B2%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B17%7D%7B2%7D%7D~%5Chfill%20%5Cstackrel%7Bmixed%7D%7B7%5Cfrac%7B2%7D%7B3%7D%7D%5Cimplies%20%5Ccfrac%7B7%5Ccdot%203%2B2%7D%7B3%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B23%7D%7B3%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Ccfrac%7B17%7D%7B2%7D%2B%5Ccfrac%7B23%7D%7B3%7D%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Busing%20the%20LCD%20of%206%7D%7D%7B%5Ccfrac%7B%283%2917~~%2B~~%282%2923%7D%7B6%7D%7D%5Cimplies%20%5Ccfrac%7B51%2B46%7D%7B6%7D%5Cimplies%20%5Ccfrac%7B97%7D%7B6%7D%5Cimplies%2016%5Cfrac%7B1%7D%7B6%7D)
What do you need help with