<h3>
<u>Answer;</u></h3>
= 5.102 m
<h3><u>Explanation;</u></h3>
The total energy, i.e. sum of kinetic and potential energy, is constant.
That is; E = KE + PE
Initially, PE = 0 and KE = 1/2 mv^2
At maximum height, velocity=0, thus, KE = 0 and PE = mgh
Since, total energy is constant (KE converts to PE when the ball is rising).
Therefore, KE = PE
or, 1/2 mv^2 = mgh
or, h = v^2 /2g
= 10^2 / (2x9.8)
=<u> 5.102 m</u>
Answer:
El uso mas común de la energía potencial gravitacional, se da en los objetos cercanos a la superficie de la Tierra donde la aceleración gravitacional, se puede presumir que es constante y vale alrededor de 9.8 m/s2.
Explanation:
The answer to this problem is 0.045
<span>Aldebaran is cooler than the sun but has a larger diameter than the Sun.</span>
Answer:
2.53 m/s
Explanation:
From the law of conservation of momentum,
For an Elastic collision,
Total kinetic energy before collision = Total kinetic energy after collision
Ek₁ = 1/2mv²+1/2m'v'²................. Equation 1
Where Ek₁ = total kinetic energy before collision, m = mass of the first cart, v = final velocity of the first cart, m' = mass of the second cart, v' = final velocity of the second cart.
Given: Ek₁ = 96 J, m = 10 kg, m' = 2 kg, v' = 8 m/s.
Substitute into equation 1 and solve for the value of v.
96 = 1/2(10)(v²)+1/2(2)(8²)
96 = 5v²+64
5v² = 96-64
5v² = 32
v² = 32/5
v² = 6.4
v = √6.4
v = 2.53 m/s
Hence the final speed of the 10 kg mass = 2.53 m/s