The age of the galaxy when we look back is 13.97 billion years.
The given parameters:
- <em>distance of the galaxy, x = 2,000 Mpc</em>
According Hubble's law the age of the universe is calculated as follows;
v = H₀x
where;
H₀ = 70 km/s/Mpc

Thus, the age of the galaxy when we look back is 13.97 billion years.
Learn more about Hubble's law here: brainly.com/question/19819028
Answer:
Usually the coefficient of friction remains unchanged
Explanation:
The coefficient of friction should in the majority of cases, remain constant no matter what your normal force is. When you apply a greater normal force, the frictional force increases, and your coefficient of friction stays the same. Here's another way to think about it: because the force of friction is equal to the normal force times the coefficient of friction, friction is increased when normal force is increased.
Plus, the coefficient of friction is a property of the materials being "rubbed", and this property usually does not depend on the normal force.
The strong nuclear force overcomes the electric force of repulsion thatacts among the protons in thenucleus. B. The weak nuclear force is involved in certain types of radioactive processes. A.The strong nuclear force is a powerful force of attraction that acts only on theneutrons and protons in the nucleus.
For our problem, this means that one mole of CO2 has a mass of 44.01 grams. So 22 grams divided by 44.01 grams is roughly 0.5 moles of CO2.
hope it helps
Answer:
Explanation:
dU= dq+w
dU is change in internal energy of the system
dq is the amount heat added or released by the system which be positive or negative respectivelý
And w is the amount of work done by the system or on the system which will be positive or negative respectively.
Hence,
dU= 250+80= 330 J
The change will be positive