Answer:
The efficiency of the ramp is, Eff = 6.63 %
Explanation:
Given,
The work done by the person pushing the furniture up the ramp is, W₁ = 1240 J
The work done by the ramp is, W₀ = 822 J
The efficiency of the ramp is given by the formula,
<em> Eff = ( W₀ / W₁ ) x 100%</em>
= ( 822 / 12400 ) x 100%
= 6.63 %
Hence, the efficiency of the ramp is, Eff = 6.63 %
Answer:
No.
Explanation:
Given the following :
Velocity (V) of ball = 5m/s
Radius = 1m
Can the ball reach the highest point of the circular track
of radius 1.0 m?
The highest point in the track could be considered as the diameter of the circle :
Radius = diameter / 2;
Diameter = (2 * Radius) = (2*1) = 2
Maximum height which the ball can reach :
Using the relation :
Kinetic Energy = Potential Energy
0.5mv^2 = mgh
0.5v^2 = gh
0.5(5^2) = 9.8h
0.5 * 25 = 9.8h
12.5 = 9.8h
h = 12.5 / 9.8
h = 1.2755
h = 1.26m
Therefore maximum height which can be reached is 1.26m.
Since h < Diameter
Answer: Because of the fine bore of the tube.
Explanation:
Temperature is the degree of hotness and coldness. And thermometer is the instrument use to measure temperature.
The two most common types of themometric fluids for thermometer are alcohol and mercury.
What makes a clinical thermometer suitable for measuring small changes in body temperature is because of the fine bore of the tube which makes it possible for small temperature changes to cause large changes in the length of mercury columns, making the thermometer very sensitive to temperature changes.
The most prominent feature of the thermometer is the kink or constriction of bore near the bulb.
Johannes Kepler was a main stargazer of the Scientific Revolution known for detailing the Laws of Planetary Motion. A stargazer, obviously, is a man who contemplates the sun, stars, planets and different parts of room. Kepler was German and lived in the vicinity of 1571 and 1630.
Despite the fact that Kepler is best known for characterizing laws in regards to planetary movement, he made a few other striking commitments to science. He was the first to discover that refraction drives vision in the eye and that utilizing two eyes empowers profundity recognition.
Answer:
His kinetic energy increases, potential energy decreases
The sum of kinetic and potential energy is a constant at any instant before he comes to rest.
Explanation:
Snowboarder is starting from a height and moving to the down direction. As he moves down his velocity increases, we know that kinetic energy is given by the expression
, so as he moves his kinetic energy increases.
When the snowboarder is starting his potential energy is maximum(Potential energy = mgh), as he comes down his potential energy decreases.
Based on this we can conclude that the sum of potential energy and kinetic energy is a constant at any instant for a snowboarder before he comes to rest.
mgh+
= Constant