The magnitude of <em>electrical</em> force on charge
due to the others is 0.102 newtons.
<h3>
How to calculate the electrical force experimented on a particle</h3>
The vector <em>position</em> of each particle respect to origin are described below:
![\vec r_{1} = (-0.500, 0)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r_%7B1%7D%20%3D%20%28-0.500%2C%200%29%5C%2C%5Bm%5D)
Then, distances of the former two particles particles respect to the latter one are found now:
![\vec r_{13} = (+0.500, +0.500)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r_%7B13%7D%20%3D%20%28%2B0.500%2C%20%2B0.500%29%5C%2C%5Bm%5D)


![\vec r_{23} = (-0.500, +0.500)\,[m]](https://tex.z-dn.net/?f=%5Cvec%20r_%7B23%7D%20%3D%20%28-0.500%2C%20%2B0.500%29%5C%2C%5Bm%5D)


The resultant force is found by Coulomb's law and principle of superposition:
(1)
Please notice that particles with charges of <em>same</em> sign attract each other and particles with charges of <em>opposite</em> sign repeal each other.
(2)
Where:
- Electrostatic constant, in newton-square meters per square Coulomb.
,
,
- Electric charges, in Coulombs.
,
- Distances between particles, in meters.
,
- Unit vectors, no unit.
If we know that
,
,
,
,
,
,
and
, then the vector force on charge
is:

![\vec R = 0.072\cdot \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right) + 0.072\cdot \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2} \right)\,[N]](https://tex.z-dn.net/?f=%5Cvec%20R%20%3D%200.072%5Ccdot%20%5Cleft%28-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2C%20-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%20%5Cright%29%20%2B%200.072%5Ccdot%20%5Cleft%28%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%2C%20-%5Cfrac%7B%5Csqrt%7B2%7D%7D%7B2%7D%20%20%5Cright%29%5C%2C%5BN%5D)
![\vec R = 0.072\cdot \left(0, -\sqrt{2}\right)\,[N]](https://tex.z-dn.net/?f=%5Cvec%20R%20%3D%200.072%5Ccdot%20%5Cleft%280%2C%20-%5Csqrt%7B2%7D%5Cright%29%5C%2C%5BN%5D)
And the magnitude of the <em>electrical</em> force on charge
(
), in newtons, due to the others is found by Pythagorean theorem:

The magnitude of <em>electrical</em> force on charge
due to the others is 0.102 newtons. 
To learn more on Coulomb's law, we kindly invite to check this verified question: brainly.com/question/506926
Answer:
R=4.22*10⁴km
Explanation:
The tangential speed
of the geosynchronous satellite is given by:

Because
is the circumference length (the distance traveled) and T is the period (the interval of time).
Now, we know that the centripetal force of an object undergoing uniform circular motion is given by:

If we substitute the expression for
in this formula, we get:

Since the centripetal force is the gravitational force
between the satellite and the Earth, we know that:
![F_g=\frac{GMm}{R^{2}}\\\\\implies \frac{GMm}{R^{2}}=\frac{4m\pi ^{2}R}{T^{2}}\\\\R^{3}=\frac{GMT^{2}}{4\pi^{2}} \\\\R=\sqrt[3]{\frac{GMT^{2}}{4\pi^{2}} }](https://tex.z-dn.net/?f=F_g%3D%5Cfrac%7BGMm%7D%7BR%5E%7B2%7D%7D%5C%5C%5C%5C%5Cimplies%20%5Cfrac%7BGMm%7D%7BR%5E%7B2%7D%7D%3D%5Cfrac%7B4m%5Cpi%20%5E%7B2%7DR%7D%7BT%5E%7B2%7D%7D%5C%5C%5C%5CR%5E%7B3%7D%3D%5Cfrac%7BGMT%5E%7B2%7D%7D%7B4%5Cpi%5E%7B2%7D%7D%20%5C%5C%5C%5CR%3D%5Csqrt%5B3%5D%7B%5Cfrac%7BGMT%5E%7B2%7D%7D%7B4%5Cpi%5E%7B2%7D%7D%20%7D)
Where G is the gravitational constant (
) and M is the mass of the Earth (
). Since the period of the geosynchronous satellite is 24 hours (equivalent to 86400 seconds), we finally can compute the radius of the satellite:
![R=\sqrt[3]{\frac{(6.67*10^{-11}Nm^{2}/kg^{2})(5.97*10^{24}kg)(86400s)^{2}}{4\pi^{2}}}\\\\R=4.22*10^{7}m=4.22*10^{4}km](https://tex.z-dn.net/?f=R%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B%286.67%2A10%5E%7B-11%7DNm%5E%7B2%7D%2Fkg%5E%7B2%7D%29%285.97%2A10%5E%7B24%7Dkg%29%2886400s%29%5E%7B2%7D%7D%7B4%5Cpi%5E%7B2%7D%7D%7D%5C%5C%5C%5CR%3D4.22%2A10%5E%7B7%7Dm%3D4.22%2A10%5E%7B4%7Dkm)
This means that the radius of the orbit of a geosynchronous satellite that circles the earth is 4.22*10⁴km.
Answer:
68.8 N
Explanation:
From the question given above, the following data were obtained:
Mass (m) of box = 18 Kg
Coefficient of friction (μ) = 0.39
Force of friction (F) =?
Next, we shall determine the normal force of the box. This is illustrated below:
Mass (m) of object = 18 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Normal force (N) =?
N = mg
N = 18 × 9.8
N = 176.4 N
Finally, we shall determine the force of friction experienced by the object. This is illustrated below:
Coefficient of friction (μ) = 0.39
Normal force (N) = 176.4 N
Force of friction (F) =?
F = μN
F = 0.39 × 176.4
F = 68.796 ≈ 68.8 N
Thus, the box experience a frictional force of 68.8 N.
Answer:
I belive that the answer is the A
Geology belongs to the category of Natural Sciences. Natural sciences is the study of natural phenomena. Among the natural sciences, we have physical science, which is the study of non-living systems. Further along this branch, we have earth sciences where Geology belongs.