(amount of heat)Q = ? , (Mass) m= 4 g , ΔT = T f - T i = 180 c° - 20 °c = 160 °c ,
Ce = 0.093 cal/g. °c
Q = m C ΔT
Q = 4 g × 0.093 cal/g.c° × ( 180 °c- 20 °c )
Q= 4×0.093 × 160
Q = 59.52 cal
I hope I helped you^_^
<span>Answer:
Assuming that I understand the geometry correctly, the combine package-rocket will move off the cliff with only a horizontal velocity component. The package will then fall under gravity traversing the height of the cliff (h) in a time T given by
h = 0.5*g*T^2
However, the speed of the package-rocket system must be sufficient to cross the river in that time
v2 = L/T
Conservation of momentum says that
m1*v1 = (m1 + m2)*v2
where m1 is the mass of the rocket, v1 is the speed of the rocket, m2 is the mass of the package, and v2 is the speed of the package-rocket system.
Expressing v2 in terms of v1
v2 = m1*v1/(m1 + m2)
and then expressing the time in terms of v1
T = (m1 + m2)*L/(m1*v1)
substituting T in the first expression
h = 0.5*g*(m1 + m2)^2*L^2/(m1*v1)^2
solving for v1, the speed before impact is given by
v1 = sqrt(0.5*g/h)*(m1 + m2)*L/m1</span>
Answer:
The answer is: letter a, pop-out effect.
Explanation:
The "pop-out effect" is a phenomenon which allows the person's precognitive processes to detect a<em> visual stimulus that is potentially the most meaningful one</em> in a person's spatial field of attention. The pop-up effect occurs when a person distinguishes one object from the rest.
For example, when a child chooses among pictures in different colors, it is common for the child to point at colored pictures rather than grayscale pictures. This is an example of a pop-out effect. <u>The properties of the colored pictures is more preferred by the child thus, causing him not to choose or mind the grayscale images.</u>
Thus, this explains the answer.
Basically it is the difference in velocity divided by the time it takes to make that change.
Answer:
24
Explanation:
24.305 of atomic mass has 12 neutrons