Answer:
12.6 cm
Explanation:
We can use the mirror equation to find the distance of the image from the mirror:

where here we have
f = 9.50 cm is the focal length
p = 39 cm is the distance of the object from the mirror
Solving the equation for q, we find:

Reduce the friction. Since the total energy is conserved, the only way to improve its work capacity is by reducing energy that doesnt go into work.
Answer:
Every action has an equal and opposite reaction. If the student doesn't push, nothing moves, is one student pushes, both move which is an example of newtons third law.
Explanation:
Formula for time
t=d/s
so…
t= 48m/4m/s
the two ms cancel each other out and ur left with s
t=12s
Answer:
x = 25 / μ [ ft]
Explanation:
To solve this exercise we can use Newton's second law.
Let's set a reference system where the x axis is parallel to the road
Y axis
N_B + N_A - W_van - W_load = 0
N_B + N_A = W_van + W_load
X axis
fr = ma
a = fr / m
the total mass is
m = (W_van + W_load) / g
the friction force has the expression
fr = μ N_{total}
fr = μy (W_van + W_load)
we substitute
a = μ (W_van + W_load)
a = μ g
taking the acceleration let's use the kinematic relations where the final velocity is zero
v² = v₀² - 2 a x
0 = v₀² -2a x
x =
x =
x =
x = 25 / μ [ ft]