Answer:
Heat can travel from one place to another in three ways: Conduction, Convection and Radiation. ... Thermal energy is transferred from hot places to cold places by convection. Convection occurs when warmer areas of a liquid or gas rise to cooler areas in the liquid or gas.
Answer:
The answer is: The increased voltage causes an increase in power usage, and the device will over-heat.
Explanation:
First, we must consider the variables of the electrical system that will allow us to respond. In this case, power, current and voltage, which are related by

Where P=Power, V=Voltage, I=Current.
In the equation it can be observed that power is directly proportional to the system voltage. Thus, if the voltage increases as in this case, the power will also increase, which overheats the device and can cause damage to it.
travel through a vacuum at the speed of light. Other waves need a medium; sound waves need molecules that vibrate.
Answer:
Tangential acceleration is in the direction of velocity - along the circumference of a circle if the object is undergoing circular motion
a = (V2 - V1) / T
Radial acceleration is perpendicular to the direction of motion if the object is not moving in a straight line (perhaps along the circumference of a circle)
a = m V^2 / R = m ω^2 R where R is the radius vector of the velocity - note that the Radius vector is directed from the center of motion to the object and for circular motion would be constant in magnitude but not in direction
the effect of pressure on surface tension can be attributed in part to absorption of gas at the surface of the liquid and in part to an intrinsic decrease in density of the liquid in the neighborhood of the surface.
In the case of liquids , Owing to contact forces between the edge of the surface and the vessel, the surface acquires a curvature, and if the liquid rises up at the edges where it meets the vessel, the pressure will be less in the liquid than in the air, for points just below and just above the surface. The vessel exerts an upward force on the liquid. This is simply a matter of looking at the directions of forces acting, knowing that the surface is under tension.