Answer:
Step-by-step explanation:
8x+47=8(x+5)
8x+47=8x+40
47=40
which is impossible so it has no solution.
Answer:
648
Step-by-step explanation:
Running this in Python, with the code as follows,
import math
cur_numbers = [0] * 3
num = 0
for i in range(100, 1000):
cur_numbers[2] = i % 10
i = math.floor(i/10)
cur_numbers[1] = i % 10
i = math.floor(i/10)
cur_numbers[0] = i % 10
if(len(set(cur_numbers)) == 3):
num += 1
print(cur_numbers)
print(num), we get 648 as our answer.
Another way to solve this is as follows:
There are 9 possibilities for the hundreds digit (1-9). Then, there are 10 possibilities for the tens digit, but we subtract 1 because it can't be the 1 same digit as the hundreds digit. For the ones digit, there are 10 possibilities, but we subtract 1 because it can't be the same as the hundreds digit and another 1 because it can't be the same as the tens digit. Multiplying these out, we have
9 possibilities for the hundreds digit x 9 possibilities for the tens digit x 8 possibilities for the ones digit = 648
Answer:
18 units
Step-by-step explanation:
The centroid is located 1/3 the distance from the midpoint of a side to the opposite vertex. That means ...
CG = 2·DG = 6 + DG
Then
DG = 6 . . . . . . subtract DG from the above equation
Of course, ...
CD = CG +DG = 2·6 +6
CD = 18
25(cards per month) x12(months in one year) =300 cards at the end of one whole year
Answer:
m(∠C) = 18°
Step-by-step explanation:
From the picture attached,
m(arc BD) = 20°
m(arc DE) = 104°
Measure of the angle between secant and the tangent drawn from a point outside the circle is half the difference of the measures of intercepted arcs.
m(∠C) = ![\frac{1}{2}[\text{arc(EA)}-\text{arc(BD)}]](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D%5B%5Ctext%7Barc%28EA%29%7D-%5Ctext%7Barc%28BD%29%7D%5D)
Since, AB is a diameter,
m(arc BD) + m(arc DE) + m(arc EA) = 180°
20° + 104° + m(arc EA) = 180°
124° + m(arc EA) = 180°
m(arc EA) = 56°
Therefore, m(∠C) = 
m(∠C) = 18°