<h3><u>given</u><u>:</u></h3>
<u>
</u>
<u>
</u>
<h3><u>to</u><u> </u><u>find</u><u>:</u></h3>
the volume of the given prism.
<h3><u>solution</u><u>:</u></h3>
<u>
</u>
<u>
</u>
<u>
</u>
<u>hence</u><u>,</u><u> </u><u>the</u><u> </u><u>volume</u><u> </u><u>of</u><u> </u><u>the</u><u> </u><u>prism</u><u> </u><u>is</u><u> </u><u>1</u><u>9</u><u>2</u><u> </u><u>cubic</u><u> </u><u>centimeters</u><u>.</u>
It says find the product, so that means multiplication
-2[7 -4 0] = [-14 8 0] solving: [-14 8 0] [-3 0 5]
[42+0+70 -24+0+40 0+0+0]
[-14 8 0] * [-3 0 5] = [112 0 -30] = [112 16 0]
[112 16 0]*[6 2 1]
[112 0 -30]* [6 2 1] = [1008 114 0] [672+224+112 96+32+16 +0]
=[1008 114 0].
Answer:
X=9?
90°
Step-by-step explanation:
Answer:
7536 
Step-by-step explanation:
Given that:
Rate of decreasing of radius = 12 km/sec
Height of cylinder is fixed at = 2.5 km
Radius of cylinder = 40 km
To find:
The rate of change of Volume of the cylinder?
Solution:
First of all, let us have a look at the formula for volume of a cylinder.

Where
is the radius and
is the height of cylinder.
As per question statement:
= 40 km (variable)
= 2.5 (constant)

As
are constant:
