Piper rockelle and I just got off the phone number
The position at time t is
x(t) = 0.5t³ - 3t² + 3t + 2
When the velocity is zero, the derivative of x with respect to t is zero. That is,
x' = 1.5t² - 6t + 3 = 0
or
t² - 4t + 2 = 0
Solve with the quadratic formula.
t = (1/2) [ 4 +/- √(16 - 8)] = 3.4142 or 0.5858 s
When t =0.5858 s, the position is
x = 0.5(0.5858³) - 3(0.5858²) + 3(0.5858) + 2 = 2.828 m
When t=3.4142 s, the position is
x = 0.5(3.4142³) - 3(3.4142²) + 3(3.4142) + 2 = -2.828 m
Reject the negative answer.
Answer:
The velocity is zero when t = 0.586 s, and the distance is 2.83 m
When the acceleration is zero, the second derivative of x with respect to t is zero. That is,
3t - 6 = 0
t = 2
The distance traveled is
x = 0.5(2³) - 3(2²) + 3(2) + 2 = 0
Answer:
When the acceleration is zero, t = 2 s, and the distance traveled is zero.
Answer:
1.74 m/s
Explanation:
From the question, we are given that the mass of the an object, m1= 2.7 kilogram(kg) and the mass of the can,m(can) is 0.72 Kilogram (kg). The velocity of the mass of an object(m1) , V1 is 1.1 metre per seconds(m/s) and the velocity of the mass of can[m(can)], V(can) is unknown- this is what we are to find.
Therefore, using the formula below, we can calculate the speed of the can, V(can);
===> Mass of object,m1 × velocity of object, V1 = mass of the can[m(can)] × velocity is of the can[V(can)].----------------------------------------------------(1).
Since the question says the collision was elastic, we use the formula below
Slotting in the given values into the equation (1) above, we have;
1/2×M1×V^2(initial velocity of the first object) + 1/2 ×M(can)×V^2(final velocy of the first object)= 1/2 × M1 × V^2 m( initial velocity of the first object).
Therefore, final velocity of the can= 2M1V1/M1+M2.
==> 2×2.7×1.1/ 2.7 + 0.72.
The velocity of the can after collision = 1.74 m/s
Answer:
C
Explanation:
Glass doesn't move freely until it is too hot and melts.