Answer:
Increase 9 times
Explanation:
We have Newton formula for attraction force between 2 objects with mass and a distance between them:
![F_G = G\frac{M_1M_2}{R^2}](https://tex.z-dn.net/?f=F_G%20%3D%20G%5Cfrac%7BM_1M_2%7D%7BR%5E2%7D)
where
is the gravitational constant.
is the masses of the 2 objects. and R is the distance between them.
Since the force is inversely proportional to the distance squared, if it is reduced by 3 times, the gravitational force between them would increase by
times
Newtons First Law of Motion:
An object at rest stays at rest and an object in motion<span> stays in </span>motion <span>with the same speed and in the same direction unless acted upon by an unbalanced force.</span>
Therefore, the relationship between force and motion is that it takes force to change the speed or direction of any object in motion.
The valence electrons are the one furthest from the nucleus
Answer:
Solution
verified
Verified by Toppr
Given:
Mass of body = 30 kg
gravitational acceleration on the moon = 1.62 m/s
2
Weight of the body on the moon = Mass of the body×gravitational acceleration on the moon=30×1.62=48 N
Answer:
The angular frequency of the block is ω = 5.64 rad/s
Explanation:
The speed of the block v = rω where r = amplitude of the oscillation and ω = angular frequency of the oscillation.
Now ω = v/r since v = speed of the block = 62 cm/s and r = the amplitude of the oscillation = 11 cm.
The angular frequency of the oscillation ω is
ω = v/r
ω = 62 cm/s ÷ 11 cm
ω = 5.64 rad/s
So, the angular frequency of the block is ω = 5.64 rad/s