The problem statement tells you "7 friends were playing basketball".
_____
It appears 5 friends were only playing basketball, 2 friends were playing basketball and having snacks, and 3 friends were only having snacks. Apparently, 10 friends were doing neither of those activities.
For proof of 3 divisibility, abc is a divisible by 3 if the sum of abc (a + b + c) is a multiple of 3.
<h3>
Integers divisible by 3</h3>
The proof for divisibility of 3 implies that an integer is divisible by 3 if the sum of the digits is a multiple of 3.
<h3>Proof for the divisibility</h3>
111 = 1 + 1 + 1 = 3 (the sum is multiple of 3 = 3 x 1) (111/3 = 37)
222 = 2 + 2 + 2 = 6 (the sum is multiple of 3 = 3 x 2) (222/3 = 74)
213 = 2 + 1 + 3 = 6 ( (the sum is multiple of 3 = 3 x 2) (213/3 = 71)
27 = 2 + 7 = 9 (the sum is multiple of 3 = 3 x 3) (27/3 = 9)
Thus, abc is a divisible by 3 if the sum of abc (a + b + c) is a multiple of 3.
Learn more about divisibility here: brainly.com/question/9462805
#SPJ1
Sin 30= x/8
X= sin 30*8
X=4