Answer:
Rectangular path
Solution:
As per the question:
Length, a = 4 km
Height, h = 2 km
In order to minimize the cost let us denote the side of the square bottom be 'a'
Thus the area of the bottom of the square, A = 
Let the height of the bin be 'h'
Therefore the total area, 
The cost is:
C = 2sh
Volume of the box, V =
(1)
Total cost,
(2)
From eqn (1):

Using the above value in eqn (1):


Differentiating the above eqn w.r.t 'a':

For the required solution equating the above eqn to zero:


a = 4
Also

The path in order to minimize the cost must be a rectangle.
Answer:
the final velocity of the car is 59.33 m/s [N]
Explanation:
Given;
acceleration of the car, a = 13 m/s²
initial velocity of the car, u = 120 km/h = 33.33 m/s
duration of the car motion, t = 2 s
The final velocity of the car in the same direction is calculated as follows;
v = u + at
where;
v is the final velocity of the car
v = 33.33 + 13 x 2
v = 59.33 m/s [N]
Therefore, the final velocity of the car is 59.33 m/s [N]
The vertical component of force exerted by the hi.nge on the beam will be,142.10N.
To find the answer, we need to know more about the tension.
<h3>
How to find the vertical component of the force exerted by the hi.nge on the beam?</h3>
- Let's draw the free body diagram of the system.
- To find the vertical component of the force exerted by the hi.nge on the beam, we have to balance the total vertical force to zero.

- To find the answer, we have to find the tension,

- Thus, the vertical component of the force exerted by the hi.nge on the beam will be,

Thus, we can conclude that, the vertical component of force exerted by the hi.nge on the beam will be,142.10N.
Learn more about the tension here:
brainly.com/question/28106868
#SPJ1
Answer:
The height of the cliff is 90.60 meters.
Explanation:
It is given that,
Initial horizontal speed of the stone, u = 10 m/s
Initial vertical speed of the stone, u' = 0 (as there is no motion in vertical direction)
The time taken by the stone from the top of the cliff to the bottom to be 4.3 s, t = 4.3 s
Let h is the height of the cliff. Using the second equation of motion in vertical direction to find it. It is given by :



h = 90.60 meters
So, the height of the cliff is 90.60 meters. Hence, this is the required solution.
The answer is λ₂ = 6.48 cm or 6.52 cm.
The out-of-tune guitar may have a wavelength between "6.48 cm" and "6.52 cm."
fb = |f2 − f1|
f₁ = 343/0.064
= 5276Hz
f₂ = 5276.9 Hz ± 17 Hz
f₂ = 5293.9 Hz or 5259.9 Hz
Now, calculating the possible wavelengths:
λ = 343/ 5259.9 or 343/ 5293.9
λ₂ = 6.48 cm or 6.52 cm
<h3>Why is beat frequency important?</h3>
When two waves with almost identical frequencies traveling in the same direction collide at a certain location, beats are produced. The opposing beneficial and harmful disruption causes the sound to alternatively be loud and weak whenever two sound waves with different frequencies reach your ear. This is referred to as beating.
The entire value of the frequency difference between the two waves is the beat frequency.
The following formula yields the beat frequency:
fb = |f2 − f1|
Learn more about beat frequency here:
brainly.com/question/14705053
#SPJ4