This is known as Muscular Endurance.
Hope this helped, and please mark brainliest!
IF the toss was straight upward, then the kinetic energy it got
from the toss is the gravitational potential energy it has at the top,
where it stops rising and starts falling.
Potential energy = (mass) x (gravity) x (height)
= (0.15 kg) x (9.8 m/s²) x (20 m)
= 29.4 kg-m²/s² = 29.4 joules .
Answer:
The earth's pull on the moon
Explanation:
Earth exerts a gravitational pull on the moon 80 times stronger than the moon's pull on the Earth.
Answer:
Both of them reach the lake at the same time.
Explanation:
We have equation of motion s = ut + 0.5at²
Vertical motion of James : -
Initial velocity, u = 0 m/s
Acceleration, a = g
Displacement, s = h
Substituting,
s = ut + 0.5 at²
h = 0 x t + 0.5 x g x t²

Vertical motion of John : -
Initial velocity, u = 0 m/s
Acceleration, a = g
Displacement, s = h
Substituting,
s = ut + 0.5 at²
h = 0 x t + 0.5 x g x t²

So both times are same.
Both of them reach the lake at the same time.
Answer:
are often associated with a galaxy that is colliding with another galaxy.
Explanation:
A starburst galaxy is a galaxy that undergoes very fast formation of stars. The rate at which stars are born is 100 times more than 3 solar masses per year of the Milky Way. The starburst is stage of the formation of a galaxy. After this stage is complete the stars will have used almost all the gas in it. As the star formation rate is very fast the difference between the age of the stars and the galaxy itself is very less. The star formation is triggered by mergers and tidal interactions between gas-rich galaxies.