1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WITCHER [35]
3 years ago
6

(1+cos2x)/(1-cos2x) = cot^2x

Mathematics
1 answer:
sesenic [268]3 years ago
8 0

We will turn the left side into the right side.

\dfrac{1 + \cos 2x}{1 - \cos2x} = \cot^2 x

Use the identity:

\cos 2x = \cos^2 x - \sin^2 x

\dfrac{1 + \cos^2 x - \sin^2 x}{1 - ( \cos^2 x - \sin^2 x)} = \cot^2 x

\dfrac{1 - \sin^2 x + \cos^2 x }{1 - \cos^2 x + \sin^2 x} = \cot^2 x

Now use the identity

\sin^2 x + \cos^2 x = 1 solved for sin^2 x and for cos^2 x.

\dfrac{\cos^2 x + \cos^2 x }{\sin^2 x + \sin^2 x} = \cot^2 x

\dfrac{2\cos^2 x}{2\sin^2 x} = \cot^2 x

\dfrac{\cos^2 x}{\sin^2 x} = \cot^2 x

\cot^2 x = \cot^2 x


You might be interested in
10
mihalych1998 [28]

Step-by-step explanation:

If a+b=50

When b=30

a=50-b

a= 50 - 30

a=20

Therefore 20(a)+30(b)=50

7 0
3 years ago
Solve the equation 3/4 X+-2X=-1/4+1/2X+5​
Vaselesa [24]

Answer:

x = -19/7 = -2.714

Step-by-step explanation:

Step  1  :

           1

Simplify   —

           2

Equation at the end of step  1  :

   3             1   1

 ((—•x)-2x)-(((0-—)+(—•x))+5)  = 0

   4             4   2

Step  2  :

           1

Simplify   —

           4

Equation at the end of step  2  :

   3             1  x

 ((—•x)-2x)-(((0-—)+—)+5)  = 0

   4             4  2

Step  3  :

Calculating the Least Common Multiple :

3.1    Find the Least Common Multiple

     The left denominator is :       4

     The right denominator is :       2

       Number of times each prime factor

       appears in the factorization of:

Prime

Factor   Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

2 2 1 2

Product of all

Prime Factors  4 2 4

     Least Common Multiple:

     4

Calculating Multipliers :

3.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M

   Denote the Left Multiplier by  Left_M

   Denote the Right Multiplier by  Right_M

   Denote the Left Deniminator by  L_Deno

   Denote the Right Multiplier by  R_Deno

  Left_M = L.C.M / L_Deno = 1

  Right_M = L.C.M / R_Deno = 2

Making Equivalent Fractions :

3.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      -1

  ——————————————————  =   ——

        L.C.M             4

  R. Mult. • R. Num.      x • 2

  ——————————————————  =   —————

        L.C.M               4  

Adding fractions that have a common denominator :

3.4       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

-1 + x • 2     2x - 1

——————————  =  ——————

    4            4  

Equation at the end of step  3  :

   3                 (2x - 1)    

 ((— • x) -  2x) -  (———————— +  5)  = 0

   4                    4        

Step  4  :

Rewriting the whole as an Equivalent Fraction :

4.1   Adding a whole to a fraction

Rewrite the whole as a fraction using  4  as the denominator :

        5     5 • 4

   5 =  —  =  —————

        1       4  

Equivalent fraction : The fraction thus generated looks different but has the same value as the whole

Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator

Adding fractions that have a common denominator :

4.2       Adding up the two equivalent fractions

(2x-1) + 5 • 4     2x + 19

——————————————  =  ———————

      4               4  

Equation at the end of step  4  :

   3                (2x + 19)

 ((— • x) -  2x) -  —————————  = 0

   4                    4    

Step  5  :

           3

Simplify   —

           4

Equation at the end of step  5  :

   3                (2x + 19)

 ((— • x) -  2x) -  —————————  = 0

   4                    4    

Step  6  :

Rewriting the whole as an Equivalent Fraction :

6.1   Subtracting a whole from a fraction

Rewrite the whole as a fraction using  4  as the denominator :

         2x     2x • 4

   2x =  ——  =  ——————

         1        4  

Adding fractions that have a common denominator :

6.2       Adding up the two equivalent fractions

3x - (2x • 4)     -5x

—————————————  =  ———

      4            4

Equation at the end of step  6  :

 -5x    (2x + 19)

 ——— -  —————————  = 0

  4         4    

Step  7  :

Adding fractions which have a common denominator :

7.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

-5x - ((2x+19))     -7x - 19

———————————————  =  ————————

       4               4    

Step  8  :

Pulling out like terms :

8.1     Pull out like factors :

  -7x - 19  =   -1 • (7x + 19)

Equation at the end of step  8  :

 -7x - 19

 ————————  = 0

    4    

Step  9  :

When a fraction equals zero :

9.1    When a fraction equals zero ...

Where a fraction equals zero, its numerator, the part which is above the fraction line, must equal zero.

Now,to get rid of the denominator, Tiger multiplys both sides of the equation by the denominator.

Here's how:

 -7x-19

 —————— • 4 = 0 • 4

   4  

Now, on the left hand side, the  4  cancels out the denominator, while, on the right hand side, zero times anything is still zero.

The equation now takes the shape :

  -7x-19  = 0

Solving a Single Variable Equation :

9.2      Solve  :    -7x-19 = 0

Add  19  to both sides of the equation :

                     -7x = 19

Multiply both sides of the equation by (-1) :  7x = -19

Divide both sides of the equation by 7:

                    x = -19/7 = -2.714

One solution was found :

                  x = -19/7 = -2.714

Processing ends successfully

plz mark me as brainliest :)

8 0
3 years ago
Use the quadratic formula to solve the equation. If necessary, round to the nearest hundredth.
DaniilM [7]
A ) h = -16 t² + 135 t + 76
Let : h = 0
0 = - 16 t² + 135 t + 76
B ) t 1/2 = (-b+/- √ ( b² - 4 ac ) / ( 2 a )
t 1/2 = (-135 - √(18,225 + 4,864))/ (-32) = ( - 135 - 151.95) / (- 32)=
= (-286.95) / (- 32) = 9.967 ≈ 9.0 s ( other solution is negative )
Answer:
2)  0 = -16 t² + 135 t + 76;  9 s 

7 0
3 years ago
Read 2 more answers
Please help (I give brainliest and follow you)
Softa [21]
(-2,0) option b is the correct answer
5 0
3 years ago
Read 2 more answers
Would someone just answer this now anyone?
brilliants [131]
Look up range in the calculator
6 0
3 years ago
Other questions:
  • I need to know this now
    8·1 answer
  • A car passes a landmark on a highway traveling at a constant rate of
    14·1 answer
  • The equation below describes a proportional relationship between x and y. What is the constant of​ proportionality? y=2/7x
    15·2 answers
  • I’ll mark brainlist the first personify gets it
    6·1 answer
  • A sample of 75 information systems managers had an average hourly income of $40.75 with a standard deviation of $7.00. The 95% c
    14·1 answer
  • Where is the point of concurrency of the angle bisectors of a triangle?
    5·1 answer
  • What is 941 divided by 2 equal long division
    7·1 answer
  • Free points insta: (jqyneii) lol- giving Brainliest to the first person
    9·2 answers
  • May someone please tell me the answer
    9·1 answer
  • Solve the system.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!