Heat energy is needed for evaporation to happen.
d. exothermic; leaving
- Exothermic reaction is a reaction that produces heat in the reaction whereas the endothermic reaction is a reaction in which heat is required to be given in the reaction to produce product.
- Fire is an exothermic reaction.
- A fire is produced due to oxidation of the fuel in the form of liquid or gas.
- A fire is an example of combustion.
- In fire both heat and light are left from fire due to the oxidation of fuel.
Hence, option d. exothermic; leaving is the correct option.
Learn more about fire:
brainly.com/question/12761984
Answer:
Altogether for both models; two red jellybeans, two white jellybeans, two black jellybeans and six blue jellybeans.
<em>Note: Since no specific color was stated for oxygen atoms, the answer assigns blue colored jellybeans to represent oxygen atoms.J</em>
Explanation:
Sodium bicarbonate, NaHCO₃ is a compound composed of one atom of sodium, one atom of hydrogen, one atom of carbon and three atoms of oxygen.
Since red jellybeans represent sodium atoms, white jellybeans represent hydrogen atoms, black jellybeans represent carbon atoms and blue jellybeans represent oxygen atoms, each of the two students will require the following number of each jellybean for their model of sodium carbonate: One red jellybean, one white jellybean, one black jellybean and three blue jellybeans.
Altogether for both models; two red jellybeans, two white jellybeans, two black jellybeans and six blue jellybeans.
Answer:
At equilibrium, reactants predominate.
Explanation:
For every reaction, the equilibrium constant is defined as the ratio between the concentration of products and reactants. Thus, for the reaction N2 (g) + O2 (g) ⇌ 2NO the expression of its equilibrium constant is:
![Keq = \frac{[NO]^{2}}{[O_{2} ][N_{2}]}](https://tex.z-dn.net/?f=Keq%20%3D%20%5Cfrac%7B%5BNO%5D%5E%7B2%7D%7D%7B%5BO_%7B2%7D%20%5D%5BN_%7B2%7D%5D%7D)
Since the equilibrium constant is Keq = 4.20x10-31 the concentration of reactants O2 and N2 must be much higher than products to obtain such a small number as 4.20x10-31 at the equilibrium. Hence, at equilibrium reactants predominate.
The mass number of aluminium hydroxide is 78 thus, the number of moles in 0.745 g is:
no. of moles= mass/ RFM
= 0.745/78
=0.00955moles
Therefore the 0.00955 moles should be in the 35.18 ml
therefore 1000ml of the solution will have:
(0.00955ml×1000ml)/35.18
=0.2715moles
The solution will be 0.27M hydrochloric acid