I think D, because water evaporates. Once it gets hot. Then condensation. I think
Fluoride is an anion of Fluorine
What this means is that the two have the same number of protons (9), but Fluoride has 10 electrons compared to Fluorine's 9.
So the answers are:
Protons - 9
Neutrons - 9
Electrons - 10
Atomic Number - 9
Atomic Mass - 19 g/mol
As the gas is heated, the particles will begin to move faster. Likewise if you start to cool a gas, the particles will move slower. Because the gas remains at a constant pressure and volume, the particles cannot spread out so they simply move around the container even faster.
Hope this helps :)
Answer:
151.4863 years
Explanation:
Half life, t1/2 = 100 years
Initial concentration,[A]o = 100%
Final concentration, [A] = 35% (after 65% have been decayed)
Time = ?
Half life for a first Order reaction is given as;
t1/2 = ln (2) / k
k = ln(2) / 100
k = 0.00693y-1
The integral rate law for first order reactions is given as;
ln[A] = ln[A]o − kt
kt = ln[A]o - ln[A]
t = ( ln[A]o - ln[A]) / k
t = [ln(100) - ln(35)] /0.00693
t = 1.0498 / 0.00693
t = 151.4863 years
Answer:
The above compound is an ether. Give thestructure of the product(s) and indicate the major mechanism of the reaction (SN1, SN2, E1 or E2). Indicate stereochemistry when necessary.
The mechanism that explains this transformation begins with the protonation of the ether, which allows the subsequent SN2 attack of the iodide ion. This reaction forms ethyl iodide and ethanol, which is also converted to ethyl iodide by reaction with excess HI.
Explanation:
The SN2 reaction (also known as bimolecular nucleophilic substitution or as an attack from the front) is a type of nucleophilic substitution, where a pair of free electrons from a nucleophile attacks an electrophilic center and binds to it, expelling another group called the leaving group. Consequently, the incoming group replaces the outgoing group in one stage. Since the two reactant species are involved in this slow limiting stage of the chemical reaction, this leads to the name bimolecular nucleophilic substitution, or SN2. Among inorganic chemicals, the SN2 reaction is often known as the exchange mechanism.