The answer to this problem is 11.6m
Answer: There are now 2.07 moles of gas in the flask.
Explanation:
P= Pressure of the gas = 697 mmHg = 0.92 atm (760 mmHg= 1 atm)
V= Volume of gas = volume of container = ?
n = number of moles = 1.9
T = Temperature of the gas = 21°C=(21+273)K= 294 K (0°C = 273 K)
R= Value of gas constant = 0.0821 Latm\K mol
When more gas is added to the flask. The new pressure is 775 mm Hg and the temperature is now 26 °C, but the volume remains same.Thus again using ideal gas equation to find number of moles.
P= Pressure of the gas = 775 mmHg = 1.02 atm (760 mmHg= 1 atm)
V= Volume of gas = volume of container = 49.8 L
n = number of moles = ?
T = Temperature of the gas = 26°C=(26+273)K= 299 K (0°C = 273 K)
R= Value of gas constant = 0.0821 Latm\K mol
Thus the now the container contains 2.07 moles.
Answer:
33.33 h
Explanation:
You know that
1 h = 60 min
If you divide both sides by 60 min, you get the conversion factor: 1 h/60 min = 1.
If you divide both sides by 1 h, you get the conversion factor: 1 = 60 min/1 h.
Both are conversion factors because they both equal one and multiplying a measurement by one does not change its value.
You choose the conversion factor that gives you the correct dimensions for your answer. It must have the correct dimensions on top (in the numerator),
Thus, to convert 2000 min to hours, you use the conversion factor with “h” on the top.

I believe the answer to your question would be Fluorine. I hope I answered your question, my friend. :)