Answer:
2.1056L or 2105.6mL
Explanation:
We'll begin by calculating the number of mole in 10g of Na2CO3. This can be obtained as follow:
Molar mass of Na2CO3 = (23x2) + 12 + (16x3) = 106g/mol
Mass of Na2CO3 = 10g
Mole of Na2CO3 =.?
Mole = mass /molar mass
Mole of Na2CO3 = 10/106
Mole of Na2CO3 = 0.094 mole
Next, we shall determine the number of mole CO2 produced by the reaction of 0.094 mole of Na2CO3. This is illustrated below:
Na2CO3 + 2HCl —> 2NaCl + H2O + CO2
From the balanced equation above,
1 mole of Na2CO3 reacted to produce 1 mole of CO2.
Therefore, 0.094 mole of Na2CO3 will also react to 0.094 mole of CO2.
Next, we shall determine the volume occupied by 0.094 mole of CO2 at STP. This is illustrated below:
1 mole of a gas occupy 22.4L at STP. This implies that 1 mole CO2 occupies 22.4L at STP.
Now, if 1 mole of CO2 occupy 22.4L at STP, then, 0.094 mole of CO2 will occupy = 0.094 x 22.4 = 2.1056L
Therefore, the volume of CO2 produced is 2.1056L or 2105.6mL
Answer:
The average height of the sunflower sprouts at the end of week 3 is 12.0
cm.
The average height of the birch sprouts at the end of week 3 is 7.2
cm.
Explanation:
they showed it on edgu
Heat needed=mcθ
=7×0.031×(42-17)
=5.425cal
Answer:
N₂O₄ + 14 kcal ⇄ 2NO₂.
Explanation:
Since the sign of ΔH determines either the reaction is exothermic or endothermic:
+ve, the reaction is endothermic.
-ve, the reaction is exothermic.
∵ The change of enthalpy of this reaction when proceeding left to right is + 14 kcal (+ ve sign).
∴ The reaction is endothermic, the heat is a part of the reacatnts in the reaction.
So, the reaction is:
N₂O₄ + 14 kcal ⇄ 2NO₂.