Answer:
34g
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
H2S + 2AgNO3 —> 2HNO3 + Ag2S
Next, we shall determine the number of mole of H2S required to react with 2 moles of AgNO3.
This is illustrated below:
From the balanced equation above,
We can see that 1 mole of H2S is required to react completely with 2 moles of AgNO3.
Finally, we shall convert 1 mole of H2S to grams. This is shown below:
Number of mole H2S = 1 mole
Molar mass of H2S = (2x1) + 32 = 34g/mol
Mass = number of mole x molar Mass
Mass of H2S = 1 x 34
Mass of H2S = 34g
Therefore, 34g of H2S is needed to react with 2 moles of AgNO3.
The answers are
The age of the oldest stars
How fast distant galaxies are moving away from us
Patterns of background radiation.
Explanation:
The Astronomers calculate the age of the universe by looking for oldest stars, and by measuring the rate of expansion of the universe and back to big bang.
The Astronomers used the techniques like the age of oldest stars, how fast the distant galaxies are moving away from us, patterns of background radiation and along with the Big Bang as reference point, they estimate that the universe may be approximately 12 billion years old.
In a dilute acid solution most if not all of the molecules will split into ions.
For example HCl is a strong acid and 100% of the molecules will split into
H+ & Cl-
in a weak acid solution only a portion of the molecules will turn into ions because the ionization percentage isn't as large. Which will essentially leave a high percentage of un-reacted molecules
This is seen in the first law of Thermodynamics stating that matter and energy cannot be destroyed nor created.