Carbon Dioxide has two polar C=O. bonds, but the geometry of Carbon dioxide is linear so that the two bond dipole moments cancel and there is no net molecular dipole moment; the molecule is nonpolar.
I hope this helps :)
Answer:
0.628 M.
Explanation:
In order to solve this problem we need to keep in mind the<em> definition of molarity</em>:
- Molarity = moles / liters
We are given both the <em>number of moles and the volume of solution</em>, meaning we can now proceed to <u>calculate the molarity</u>:
- Molarity = 0.220 mol / 0.350 L
What helps me to balance equations is to list the elements i have on each side of the equation, and use tally marks to see what I have and don't have. Then when I'm done balancing, I tally again to make sure everything matches up.
On the left side, you have 1 Al, and 2 O. On the right side, 1 Al and 3 O.
In order for the equation to balance, you need to place a 2 in front of the AlO on the right side. This would make the Al have 2 atoms and the O have six. On the left side, you need to place a 2 in front of the Al and a 3 in front of the O, making it six. Left side: 2 Al's 6 O's. Right side: 2 Al's and 6 O's. Matches!
The nucleus, that dense central core of the atom, contains both protons and neutrons. Electrons are outside the nucleus in energy levels. Protons have a positive charge,neutrons have no charge, and electrons have a negative charge. A neutral atom contains equal numbers of protons and electrons.