1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
julsineya [31]
3 years ago
9

Solve the differential equation dy/dx=x/49y. Find an implicit solution and put your answer in the following form: = constant. he

lp (formulas) Find the equation of the solution through the point (x,y)=(7,1). help (equations) Find the equation of the solution through the point (x,y)=(0,−3). Your answer should be of the form y=f(x). help (equations)
Mathematics
1 answer:
anygoal [31]3 years ago
4 0

Answer:

The general solution of the differential equation is \frac{49y^{2} }{2}-\frac{x^{2} }{2} = c_{3}

The equation of the solution through the point (x,y)=(7,1) is y=\frac{x}{7}

The equation of the solution through the point (x,y)=(0,-3) is \:y=-\frac{\sqrt{441+x^2}}{7}

Step-by-step explanation:

This differential equation \frac{dy}{dx}=\frac{x}{49y} is a separable first-order differential equation.

We know this because a first order differential equation (ODE) y' =f(x,y) is called a separable equation if the function f(x,y) can be factored into the product of two functions of <em>x</em> and <em>y</em>

f(x,y)=p(x)\cdot h(y) where<em> p(x) </em>and<em> h(y) </em>are continuous functions. And this ODE is equal to \frac{dy}{dx}=x\cdot \frac{1}{49y}

To solve this differential equation we rewrite in this form:

49y\cdot dy=x \cdot dx

And next we integrate both sides

\int\limits {49y} \, dy=\int\limits {x} \, dx

\mathrm{Apply\:the\:Power\:Rule}:\quad \int x^adx=\frac{x^{a+1}}{a+1}\\\int\limits {49y} \, dy=\frac{49y^{2} }{2} + c_{1}

\int\limits {x} \, dx=\frac{x^{2} }{2} +c_{2}

So

\int\limits {49y} \, dy=\int\limits {x} \, dx\\\frac{49y^{2} }{2} + c_{1} =\frac{x^{2} }{2} +c_{2}

We can subtract constants c_{3}=c_{2}-c_{1}

\frac{49y^{2} }{2} =\frac{x^{2} }{2} +c_{3}

An explicit solution is any solution that is given in the form y=y(t). That means that the only place that y actually shows up is once on the left side and only raised to the first power.

An implicit solution is any solution of the form  f(x,y)=g(x,y) which means that y and x are mixed (<em>y</em> is not expressed in terms of <em>x</em> only).

The general solution of this differential equation is:

\frac{49y^{2} }{2}-\frac{x^{2} }{2} = c_{3}

  • To find the equation of the solution through the point (x,y)=(7,1)

We find the value of the c_{3} with the help of the point (x,y)=(7,1)

\frac{49*1^2\:}{2}-\frac{7^2\:}{2}\:=\:c_3\\c_3 = 0

Plug this into the general solution and then solve to get an explicit solution.

\frac{49y^2\:}{2}-\frac{x^2\:}{2}\:=\:0

\mathrm{Add\:}\frac{x^2}{2}\mathrm{\:to\:both\:sides}\\\frac{49y^2}{2}-\frac{x^2}{2}+\frac{x^2}{2}=0+\frac{x^2}{2}\\Simplify\\\frac{49y^2}{2}=\frac{x^2}{2}\\\mathrm{Multiply\:both\:sides\:by\:}2\\\frac{2\cdot \:49y^2}{2}=\frac{2x^2}{2}\\Simplify\\9y^2=x^2\\\mathrm{Divide\:both\:sides\:by\:}49\\\frac{49y^2}{49}=\frac{x^2}{49}\\Simplify\\y^2=\frac{x^2}{49}\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

y=\frac{x}{7},\:y=-\frac{x}{7}

We need to check the solutions by applying the initial conditions

With the first solution we get:

y=\frac{x}{7}=\\1=\frac{7}{7}\\1=1\\

With the second solution we get:

\:y=-\frac{x}{7}\\1=-\frac{7}{7}\\1\neq -1

Therefore the equation of the solution through the point (x,y)=(7,1) is y=\frac{x}{7}

  • To find the equation of the solution through the point (x,y)=(0,-3)

We find the value of the c_{3} with the help of the point (x,y)=(0,-3)

\frac{49*-3^2\:}{2}-\frac{0^2\:}{2}\:=\:c_3\\c_3 = \frac{441}{2}

Plug this into the general solution and then solve to get an explicit solution.

\frac{49y^2\:}{2}-\frac{x^2\:}{2}\:=\:\frac{441}{2}

y^2=\frac{441+x^2}{49}\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\y=\frac{\sqrt{441+x^2}}{7},\:y=-\frac{\sqrt{441+x^2}}{7}

We need to check the solutions by applying the initial conditions

With the first solution we get:

y=\frac{\sqrt{441+x^2}}{7}\\-3=\frac{\sqrt{441+0^2}}{7}\\-3\neq 3

With the second solution we get:

y=-\frac{\sqrt{441+x^2}}{7}\\-3=-\frac{\sqrt{441+0^2}}{7}\\-3=-3

Therefore the equation of the solution through the point (x,y)=(0,-3) is \:y=-\frac{\sqrt{441+x^2}}{7}

You might be interested in
-6-5
Dmitry [639]

Answer: A

Step-by-step explanation:

Following the first two steps of the sequence of transformations,

A(-4,-2) \longrightarrow (-2,-1) \longrightarrow (-2,1)

We need to map this onto D(1,1), which involves a translation 3 units right.

4 0
2 years ago
Determine the value of x in the diagram where lines a and b are parallel
Yakvenalex [24]
If lines a and b are parallel, the two angles given would be the same.
2x - 5 = x + 20
x = 25
6 0
3 years ago
Find the missing measure.
eduard

Answer:

59

Step-by-step explanation:

(360-92-150)/2

= 118/2

= 59

Answered by GAUTHMATH

4 0
3 years ago
Television screen sizes are the diagonal length of the
VikaD [51]
X/8 = 19/13 => x = (8*19)/13 = 11.69 inches long;
8 0
2 years ago
Read 2 more answers
−x2 +11x−24 <br><br> −(x−3)(x+8) <br> (x+3)(x+8) <br> −(x−3)(x−8) <br> −(x+3)(x−8)
Rufina [12.5K]
Download an app called photo math its should help thats what i use
5 0
3 years ago
Other questions:
  • What is reference angle???
    13·1 answer
  • Grandpa Gump is 63 years old his age is 2 years less than five times age of Billy, how old is Billy
    13·1 answer
  • A museum is open for 8 hours each day.THe manager schedules 12 tours for Tuesday.How long does each tour last
    9·2 answers
  • Use the Binomial Theorem and Pascal’s Triangle to write each binomial expansion.
    6·1 answer
  • Would (1,1), (2,3), (3,6), (4,10) be a linear relationship
    12·1 answer
  • Solve the system of equations by substitution. 7+2y=8 3x-2y=0
    5·1 answer
  • What is the value x in 8+6y=9
    14·1 answer
  • What’s the area of this electric radiator?
    6·2 answers
  • 5x - 9y = -13<br> -2x + 3y = 4
    7·1 answer
  • Round 1276 to the nearest ten?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!