1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
julsineya [31]
4 years ago
9

Solve the differential equation dy/dx=x/49y. Find an implicit solution and put your answer in the following form: = constant. he

lp (formulas) Find the equation of the solution through the point (x,y)=(7,1). help (equations) Find the equation of the solution through the point (x,y)=(0,−3). Your answer should be of the form y=f(x). help (equations)
Mathematics
1 answer:
anygoal [31]4 years ago
4 0

Answer:

The general solution of the differential equation is \frac{49y^{2} }{2}-\frac{x^{2} }{2} = c_{3}

The equation of the solution through the point (x,y)=(7,1) is y=\frac{x}{7}

The equation of the solution through the point (x,y)=(0,-3) is \:y=-\frac{\sqrt{441+x^2}}{7}

Step-by-step explanation:

This differential equation \frac{dy}{dx}=\frac{x}{49y} is a separable first-order differential equation.

We know this because a first order differential equation (ODE) y' =f(x,y) is called a separable equation if the function f(x,y) can be factored into the product of two functions of <em>x</em> and <em>y</em>

f(x,y)=p(x)\cdot h(y) where<em> p(x) </em>and<em> h(y) </em>are continuous functions. And this ODE is equal to \frac{dy}{dx}=x\cdot \frac{1}{49y}

To solve this differential equation we rewrite in this form:

49y\cdot dy=x \cdot dx

And next we integrate both sides

\int\limits {49y} \, dy=\int\limits {x} \, dx

\mathrm{Apply\:the\:Power\:Rule}:\quad \int x^adx=\frac{x^{a+1}}{a+1}\\\int\limits {49y} \, dy=\frac{49y^{2} }{2} + c_{1}

\int\limits {x} \, dx=\frac{x^{2} }{2} +c_{2}

So

\int\limits {49y} \, dy=\int\limits {x} \, dx\\\frac{49y^{2} }{2} + c_{1} =\frac{x^{2} }{2} +c_{2}

We can subtract constants c_{3}=c_{2}-c_{1}

\frac{49y^{2} }{2} =\frac{x^{2} }{2} +c_{3}

An explicit solution is any solution that is given in the form y=y(t). That means that the only place that y actually shows up is once on the left side and only raised to the first power.

An implicit solution is any solution of the form  f(x,y)=g(x,y) which means that y and x are mixed (<em>y</em> is not expressed in terms of <em>x</em> only).

The general solution of this differential equation is:

\frac{49y^{2} }{2}-\frac{x^{2} }{2} = c_{3}

  • To find the equation of the solution through the point (x,y)=(7,1)

We find the value of the c_{3} with the help of the point (x,y)=(7,1)

\frac{49*1^2\:}{2}-\frac{7^2\:}{2}\:=\:c_3\\c_3 = 0

Plug this into the general solution and then solve to get an explicit solution.

\frac{49y^2\:}{2}-\frac{x^2\:}{2}\:=\:0

\mathrm{Add\:}\frac{x^2}{2}\mathrm{\:to\:both\:sides}\\\frac{49y^2}{2}-\frac{x^2}{2}+\frac{x^2}{2}=0+\frac{x^2}{2}\\Simplify\\\frac{49y^2}{2}=\frac{x^2}{2}\\\mathrm{Multiply\:both\:sides\:by\:}2\\\frac{2\cdot \:49y^2}{2}=\frac{2x^2}{2}\\Simplify\\9y^2=x^2\\\mathrm{Divide\:both\:sides\:by\:}49\\\frac{49y^2}{49}=\frac{x^2}{49}\\Simplify\\y^2=\frac{x^2}{49}\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

y=\frac{x}{7},\:y=-\frac{x}{7}

We need to check the solutions by applying the initial conditions

With the first solution we get:

y=\frac{x}{7}=\\1=\frac{7}{7}\\1=1\\

With the second solution we get:

\:y=-\frac{x}{7}\\1=-\frac{7}{7}\\1\neq -1

Therefore the equation of the solution through the point (x,y)=(7,1) is y=\frac{x}{7}

  • To find the equation of the solution through the point (x,y)=(0,-3)

We find the value of the c_{3} with the help of the point (x,y)=(0,-3)

\frac{49*-3^2\:}{2}-\frac{0^2\:}{2}\:=\:c_3\\c_3 = \frac{441}{2}

Plug this into the general solution and then solve to get an explicit solution.

\frac{49y^2\:}{2}-\frac{x^2\:}{2}\:=\:\frac{441}{2}

y^2=\frac{441+x^2}{49}\\\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}\\y=\frac{\sqrt{441+x^2}}{7},\:y=-\frac{\sqrt{441+x^2}}{7}

We need to check the solutions by applying the initial conditions

With the first solution we get:

y=\frac{\sqrt{441+x^2}}{7}\\-3=\frac{\sqrt{441+0^2}}{7}\\-3\neq 3

With the second solution we get:

y=-\frac{\sqrt{441+x^2}}{7}\\-3=-\frac{\sqrt{441+0^2}}{7}\\-3=-3

Therefore the equation of the solution through the point (x,y)=(0,-3) is \:y=-\frac{\sqrt{441+x^2}}{7}

You might be interested in
Please helpppp i will mark brainlisttt
Studentka2010 [4]
I believe it’s 29
Because 14.5 + 14.5 = 29
Then 29-58=29
To find mm
3 0
3 years ago
Read 2 more answers
Lines ac and rs can best be described as<br> Intersecting<br> Parallel<br> Perpendicular<br> Skew
svlad2 [7]

Answer:

Skew (option d).

Step-by-step explanation:

Skew lines are the lines that do not intersect with each other. These lines exist in different planes and hence do not intersect each other and they are also not parallel. For skew lines to exist,  3 -d planes are required.

Here, the lines e and c are skew lines because they do not intersect each other and are lying on different panes. They are also skew line because the planes are co-planer,

Hence, the lines e and c are skew lines.

5 0
4 years ago
Read 2 more answers
There are 9 red marbles and 5 blue marbles in a bag. What is the ratio of blue marbles to all marbles
LenKa [72]

Answer:

9:5

Step-by-step explanation:

I think it's 9:5 sorry if I'm wrong.

4 0
2 years ago
Which of the following are solutions to the equation below? Check all that apply. 4x2 - 81 = 0
Vinil7 [7]

Answer:

9/2 -9/2

Step-by-step explanation:

Hope this helps! ;-)

8 0
2 years ago
A flying disc has a radius of 10 inches. What is the area of one side of the flying disc to the nearest square inch? Use 3.14
iren [92.7K]
The area of the disk is approximately 314 inches
5 0
3 years ago
Other questions:
  • Sam and chad are ticket-sellers at their class play. sam is selling student tickets for $2.00 each, and chad selling adult ticke
    5·1 answer
  • Find the equation of the line whose slope is 2 and which passes through the point (-2,4)
    15·1 answer
  • Describe the energy transformations that occur when you burn a piece of wood
    13·1 answer
  • How do you solve for x? 5e^x+3=18
    8·1 answer
  • The elevation of the sun is 40 degrees from the ground. A business building casts a shadow that is 67 m long. How tall is the bu
    9·1 answer
  • Snowdon has a height of approximately 1100 metres above sea level.
    8·1 answer
  • True or false - The only way to charge an object with static electricity is by rubbing it against another object.
    13·2 answers
  • What is the measure of AC?
    6·1 answer
  • Verify the identity. (cos x/ 1+ sin x) + (1+ sin x/cos x) = 2 sec x​
    10·1 answer
  • Determine whether each relation is a function
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!