Answer:
Step-by-step explanation:
We'll take this step by step. The equation is
![8-3\sqrt[5]{x^3}=-7](https://tex.z-dn.net/?f=8-3%5Csqrt%5B5%5D%7Bx%5E3%7D%3D-7)
Looks like a hard mess to solve but it's actually quite simple, just do one thing at a time. First thing is to subtract 8 from both sides:
![-3\sqrt[5]{x^3}=-15](https://tex.z-dn.net/?f=-3%5Csqrt%5B5%5D%7Bx%5E3%7D%3D-15)
The goal is to isolate the term with the x in it, so that means that the -3 has to go. Divide it away on both sides:
![\sqrt[5]{x^3}=5](https://tex.z-dn.net/?f=%5Csqrt%5B5%5D%7Bx%5E3%7D%3D5)
Let's rewrite that radical into exponential form:

If we are going to solve for x, we need to multiply both sides by the reciprocal of the power:

On the left, multiplying the rational exponent by its reciprocal gets rid of the power completely. On the right, let's rewrite that back in radical form to solve it easier:
![x=\sqrt[3]{5^5}](https://tex.z-dn.net/?f=x%3D%5Csqrt%5B3%5D%7B5%5E5%7D)
Let's group that radicad into groups of 3's now to make the simplifying easier:
because the cubed root of 5 cubed is just 5, so we can pull it out, leaving us with:
which is the same as:
![x=5\sqrt[3]{25}](https://tex.z-dn.net/?f=x%3D5%5Csqrt%5B3%5D%7B25%7D)
Answer:
Before we can simplify radicals, we need to know some rules about them. These rules just follow on from what we learned in the first 2 sections in this chapter, Integral Exponents and Fractional Exponents.
Expressing in simplest radical form just means simplifying a radical so that there are no more square roots, cube roots, 4th roots, etc left to find. It also means removing any radicals in the denominator of a fraction
Step-by-step explanation:
The probability of rolling a 1 or an even number is 5/8.
If there are 8 sides of the die from numbers 1-8, the numbers of the probability are 1, 2, 4, 6, and 8. That makes 5 numbers out of 8 possible numbers. So, the probability is 5/8.(62.5%)
Answer:
(2x-1)(2x+1)
Step-by-step explanation:
the answer is c
Answer:
Los números enteros son los naturales, sus opuestos (negativos) y el cero. El conjunto de los números enteros se representa mediante una Z, Z= {0,1,-1,2,-2,3,-3,4,-4...}. Se cumple entonces que todo número natural es entero.