So by definition, area is equal to the length (x) times the width (y). The area of the square mat is = x × y, or xy
If the area of<span> the rectangular mat is twice that of the square mat, the area of the rectangular mat would have to be = 2 </span>× x × y<span>
This can be written as 2x </span>× y, making the length of the rectangular mat twice that of the square mat's length, and the width the same as the square mat's width.<span>
</span>
Answer:
A= −3x+30
A=30 when x=0 which is the y−intercept.
(0,30) is a point on the graph
A=12 when x=6.
Find the slope using the two points
12-30/6-0= -18/6=-3
Answer:
1562.5
Step-by-step explanation:
WE just do cross multiplication for this.
==>(250000*5)/800=1562.5
Answer:
Rly lazy man.....
Step-by-step explanation:
1/2*l*w is the area of triangle, plug in values...
1/2*4.5*6.6
14.85 square feet is the area
• Angles DXC and AXB form a vertical pair, so they are congruent and have the same measure.
• ∆ABD is isosceles, since it's given that AD and BD are congruent. This means the "base angles" BAD and ABD have the same measure; call this measure <em>x</em>.
• The measure of angle ADB can be computed by using the inscribed angle theorem, which says
m∠ADB = 1/2 (100°) = 50°
(that is, it's half the measure of the subtended arc AB whose measure is 100°)
• The interior angle to any triangle sum to 180° in measure. So we have in ∆ABD,
m∠ADB + 2<em>x</em> = 180°
Solve for <em>x</em> :
50° + 2<em>x</em> = 180°
2<em>x</em> = 130°
<em>x</em> = 65°
• Use the inscribed angle theorem again to find the measure of angle BAC. This will be half the measure of the subtended arc BC, so
m∠BAC = 1/2 (50°) = 25°
• Now in ∆ABX, we have
m∠AXB + 25° + 65° = 180°
m∠AXB = 90°
Hence m∠DXC = 90°.