No.
1/4 would be proportional to 9/36.
8/36 can be simplified to 4/18, and further reduced to 2/9.
Answer: -49
Step-by-step explanation: hope this helps you and plz mark me as brainest
bearing in mind that the hypotenuse is never negative, since it's just a distance unit, so if an angle has a sine ratio of -(5/13) the negative must be the numerator, namely -5/13.
![\bf cos\left[ sin^{-1}\left( -\cfrac{5}{13} \right) \right] \\\\[-0.35em] ~\dotfill\\\\ \stackrel{\textit{then we can say that}~\hfill }{sin^{-1}\left( -\cfrac{5}{13} \right)\implies \theta }\qquad \qquad \stackrel{\textit{therefore then}~\hfill }{sin(\theta )=\cfrac{\stackrel{opposite}{-5}}{\stackrel{hypotenuse}{13}}}\impliedby \textit{let's find the \underline{adjacent}}](https://tex.z-dn.net/?f=%5Cbf%20cos%5Cleft%5B%20sin%5E%7B-1%7D%5Cleft%28%20-%5Ccfrac%7B5%7D%7B13%7D%20%5Cright%29%20%5Cright%5D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Bthen%20we%20can%20say%20that%7D~%5Chfill%20%7D%7Bsin%5E%7B-1%7D%5Cleft%28%20-%5Ccfrac%7B5%7D%7B13%7D%20%5Cright%29%5Cimplies%20%5Ctheta%20%7D%5Cqquad%20%5Cqquad%20%5Cstackrel%7B%5Ctextit%7Btherefore%20then%7D~%5Chfill%20%7D%7Bsin%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B-5%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B13%7D%7D%7D%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Badjacent%7D%7D)
![\bf \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-b^2}=a \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases} \\\\\\ \pm\sqrt{13^2-(-5)^2}=a\implies \pm\sqrt{144}=a\implies \pm 12=a \\\\[-0.35em] ~\dotfill\\\\ cos\left[ sin^{-1}\left( -\cfrac{5}{13} \right) \right]\implies cos(\theta )=\cfrac{\stackrel{adjacent}{\pm 12}}{13}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20%5Cpm%5Csqrt%7Bc%5E2-b%5E2%7D%3Da%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20%5Cpm%5Csqrt%7B13%5E2-%28-5%29%5E2%7D%3Da%5Cimplies%20%5Cpm%5Csqrt%7B144%7D%3Da%5Cimplies%20%5Cpm%2012%3Da%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20cos%5Cleft%5B%20sin%5E%7B-1%7D%5Cleft%28%20-%5Ccfrac%7B5%7D%7B13%7D%20%5Cright%29%20%5Cright%5D%5Cimplies%20cos%28%5Ctheta%20%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B%5Cpm%2012%7D%7D%7B13%7D)
le's bear in mind that the sine is negative on both the III and IV Quadrants, so both angles are feasible for this sine and therefore, for the III Quadrant we'd have a negative cosine, and for the IV Quadrant we'd have a positive cosine.
Answer:
12.5 un^2
Step-by-step explanation:
The formula for area of a trapezoid is (a+b)/2 *h
a and b are the shorter and longer bases respectively. H is height, you have both.
Simply plug it into the equation and find your answer.
(2.5+7.5)/2 *2.5 = 5*2.5 which is equal to 12.5. Add units.
The answer is going to be A.
Shadow 1 / Height 1 = Shadow 2 / Height 2