Answer:
(1) .20 (2) .40 (3) .12 (4) Less than
Step-by-step explanation:
You have to look at the table. There are 5 columns with 10 rows. 5x10=50
Then simply count the boxes that have the correct number of currency for instance, if they are asking for EXACTLY 1 dime then you rule out the ones that have 2 or 3 dimes and only the count the ones that have a single dime. So you count PDN but you would not count PDD. There are 20 boxes that have a single dime in them. 20 out of the 50 boxes. 20/50=.40 (answer 2)
The estimated probability that exactly two of the three coins Avery randomly picked are nickels is .
20
The estimated probability that exactly one of the three coins Avery randomly picked is a dime is .
40
The estimated probability that all three coins Avery randomly picked are pennies is .
12
The answer to #1 is .20 or 20% and the answer to #2 is .40 or 40%. 20% is less than 40% so...
The estimated probability that exactly two of the three coins Avery randomly picked are nickels is LESS THAN the estimated probability that exactly one of the three coins Avery randomly picked is a dime.
Answer:
It will be equal to 40
Step-by-step explanation:
We have to compute 
Let first find 3 !
For this we have to use factorial concept
So 3! will be equal to 3! = 3×2×1 = 6
Now According to 6+2 = 8
And now after solving bracket we have to multiply with 5
So 5×8 = 40
So after computation 
So the final answer will be 40
A quarter, two dimes, and two pennies.
the answer is 39 because you need to divide.