Answer:
<h2>Carbon is the chemical backbone of life on Earth. Carbon compounds regulate the Earth’s temperature, make up the food that sustains us, and provide energy that fuels our global economy.
</h2><h2 /><h2>The carbon cycle.
</h2><h2>Most of Earth’s carbon is stored in rocks and sediments. The rest is located in the ocean, atmosphere, and in living organisms. These are the reservoirs through which carbon cycles.
</h2><h2 /><h2>NOAA technicians service a buoy in the Pacific Ocean designed to provide real-time data for ocean, weather and climate prediction.
</h2><h2>NOAA buoys measure carbon dioxide
</h2><h2>NOAA observing buoys validate findings from NASA’s new satellite for measuring carbon dioxide
</h2><h2>Listen to the podcast
</h2><h2>Carbon storage and exchange
</h2><h2>Carbon moves from one storage reservoir to another through a variety of mechanisms. For example, in the food chain, plants move carbon from the atmosphere into the biosphere through photosynthesis. They use energy from the sun to chemically combine carbon dioxide with hydrogen and oxygen from water to create sugar molecules. Animals that eat plants digest the sugar molecules to get energy for their bodies. Respiration, excretion, and decomposition release the carbon back into the atmosphere or soil, continuing the cycle.
</h2><h2 /><h2>The ocean plays a critical role in carbon storage, as it holds about 50 times more carbon than the atmosphere. Two-way carbon exchange can occur quickly between the ocean’s surface waters and the atmosphere, but carbon may be stored for centuries at the deepest ocean depths.
</h2><h2 /><h2>Rocks like limestone and fossil fuels like coal and oil are storage reservoirs that contain carbon from plants and animals that lived millions of years ago. When these organisms died, slow geologic processes trapped their carbon and transformed it into these natural resources. Processes such as erosion release this carbon back into the atmosphere very slowly, while volcanic activity can release it very quickly. Burning fossil fuels in cars or power plants is another way this carbon can be released into the atmospheric reservoir quickly.</h2>
Explanation:
It is mostly glass and fiber glass
Answer:
Spinal cord is a colon of nerve tissue that runs from the base of the skull to the center of the back.
Its function is to act as a highway communication between the body and the brain.
Explanation:
Answer:
A possible hypothesis would be:
IF a yeast cell is supplied with maltose sugar, THEN it would yield the greatest amount of energy when metabolized by bacteria
Explanation:
The hypothesis is a testable explanation aimed at providing a theoretical explanation to a question. The hypothesis is a predictive statement about the possible solution, which can be tested. A hypothesis must be testable via experimentation. It often has an IF, THEN format.
Hence, in the case experiment where a student wanted to know which sugar (maltose, glucose or sucrose) would yield the greatest amount of energy for the cell when metabolized by mitochondria. A possible hypothesis of this experiment will be that: IF a yeast cell is supplied with maltose sugar, THEN it would yield the greatest amount of energy when metabolized by bacteria
Note that, this hypothesis must be testable by conducting an experiment and it doesn't have to be true. It can be disproved or proved by the outcome of the experiment. In this case, the hypothesis is giving an educated guess that maltose is the sugar that will yield the greatest amount of energy for yeast cells
Answer:
a. a disease
Explanation:
Pathogens are disease-causing organisms. For example, some bacteria and viruses are pathogens for different species.
Therefore, a tree with pathogens present is likely to have a disease. Different pathogens affect different trees. Examples include Anthracnose
, which is caused by a fungus