1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
juin [17]
3 years ago
15

What is 0.79 divided by 100

Mathematics
2 answers:
Alexxx [7]3 years ago
6 0
0.0079 is the answer to that problem 
DedPeter [7]3 years ago
5 0
The answer is 0.0079 to this problem

You might be interested in
Find the midpoint of the line segment joining the points ​(-1​,​-1) and ​(-3​,​12).
gregori [183]

Answer:

(-2, 11/2)

Step-by-step explanation:

use the mid-point formula!

((x1+x2)/2, (y1+y2)/2)

((-1+-3)/2, (-1+12)/2)

(-2, 11/2)

8 0
4 years ago
What are acceptable ways to represent the statement "x is a distance of five from 0." Choose ALL that apply.
Ahat [919]
Hello! You should select a, b, and c.
Think of it like on a number line, x could be 5, or -5 and still be the same distance from 0. Absolute vales are the same way, so if the answer is 5 or -5, its right! It cant be the last one because x, must only be 5 or -5. Hope that helps!
5 0
3 years ago
Read 2 more answers
Look at the attachment pls!!
Naddika [18.5K]

The terms -12x^2y and 4x^2y can be added to 3x^2y to result in a monomial.

Step-by-step explanation:

Given term is;

3x^2y

A monomial is an algebraic expression that consists of only one term.

So in the given expressions, we will add the terms which have same variables as given terms.

Given options are;

3xy\\-12x^2y\\2x^2y^2\\7xy^2\\-10x^2\\4x^2y\\3x^3

The terms -12x^2y and 4x^2y can be added to 3x^2y to result in a monomial.

4 0
3 years ago
Let z=3+i, <br>then find<br> a. Z²<br>b. |Z| <br>c.<img src="https://tex.z-dn.net/?f=%5Csqrt%7BZ%7D" id="TexFormula1" title="\sq
zysi [14]

Given <em>z</em> = 3 + <em>i</em>, right away we can find

(a) square

<em>z</em> ² = (3 + <em>i </em>)² = 3² + 6<em>i</em> + <em>i</em> ² = 9 + 6<em>i</em> - 1 = 8 + 6<em>i</em>

(b) modulus

|<em>z</em>| = √(3² + 1²) = √(9 + 1) = √10

(d) polar form

First find the argument:

arg(<em>z</em>) = arctan(1/3)

Then

<em>z</em> = |<em>z</em>| exp(<em>i</em> arg(<em>z</em>))

<em>z</em> = √10 exp(<em>i</em> arctan(1/3))

or

<em>z</em> = √10 (cos(arctan(1/3)) + <em>i</em> sin(arctan(1/3))

(c) square root

Any complex number has 2 square roots. Using the polar form from part (d), we have

√<em>z</em> = √(√10) exp(<em>i</em> arctan(1/3) / 2)

and

√<em>z</em> = √(√10) exp(<em>i</em> (arctan(1/3) + 2<em>π</em>) / 2)

Then in standard rectangular form, we have

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right)\right)

and

\sqrt z = \sqrt[4]{10} \left(\cos\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right) + i \sin\left(\dfrac12 \arctan\left(\dfrac13\right) + \pi\right)\right)

We can simplify this further. We know that <em>z</em> lies in the first quadrant, so

0 < arg(<em>z</em>) = arctan(1/3) < <em>π</em>/2

which means

0 < 1/2 arctan(1/3) < <em>π</em>/4

Then both cos(1/2 arctan(1/3)) and sin(1/2 arctan(1/3)) are positive. Using the half-angle identity, we then have

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

and since cos(<em>x</em> + <em>π</em>) = -cos(<em>x</em>) and sin(<em>x</em> + <em>π</em>) = -sin(<em>x</em>),

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1+\cos\left(\arctan\left(\dfrac13\right)\right)}2}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{1-\cos\left(\arctan\left(\dfrac13\right)\right)}2}

Now, arctan(1/3) is an angle <em>y</em> such that tan(<em>y</em>) = 1/3. In a right triangle satisfying this relation, we would see that cos(<em>y</em>) = 3/√10 and sin(<em>y</em>) = 1/√10. Then

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1+\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10+3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)\right) = \sqrt{\dfrac{1-\dfrac3{\sqrt{10}}}2} = \sqrt{\dfrac{10-3\sqrt{10}}{20}}

\cos\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

\sin\left(\dfrac12 \arctan\left(\dfrac13\right)+\pi\right) = -\sqrt{\dfrac{10-3\sqrt{10}}{20}}

So the two square roots of <em>z</em> are

\boxed{\sqrt z = \sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

and

\boxed{\sqrt z = -\sqrt[4]{10} \left(\sqrt{\dfrac{10+3\sqrt{10}}{20}} + i \sqrt{\dfrac{10-3\sqrt{10}}{20}}\right)}

3 0
3 years ago
Read 2 more answers
Please hurry lol
agasfer [191]

Answer:

what grade are u

Step-by-step explanation:

so that I c could definetly answer it

3 0
3 years ago
Other questions:
  • Dale bought a map of his city.it uses a scale of 1 inch = 8miles. dales house and school are 1 1/2 inches apart on the map. how
    8·1 answer
  • Which expression is equivalent to 1/3y
    15·2 answers
  • Select the correct answer from each drop-down menu. The figure shows three parallelograms: ABCD, A′B′C′D′, and A″B″C″D″.
    10·1 answer
  • What is the value of x ? Plzzz help
    5·2 answers
  • Knowing that 2i is one answer to the equation x^4 - 2x^3 + 6x^2 - 8x + m = 0, find the 'm' and the other possible answers.
    6·1 answer
  • I BEG FOR YOUR HELP PLEASEEEEEEE Carlie is building two garden beds. Each garden bed is 120 square feet. She is planting small p
    10·1 answer
  • 4 (2x + 1) — 5х + 3x +9
    8·1 answer
  • Use the following coordinate plane to write the ordered pair for each point.
    8·1 answer
  • Y is directly proportional to x squared. if y=12 when x=2 find x when y=48
    13·1 answer
  • Helpppp how do I do this? ​
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!