To form an equation with the given information, we use the formula :
y = mx + b, m being the slope and b being the y-intercept.
Since it is given that the slope is -9/7, we substitute m with -9/7.
y = -9/7x + b
To find b, we will substitute the known coordinates into the equation :
At point (-7 , 4), x = -7, y = 4
4 = -9/7 (-7) + b
4 = 9 + b
b = 4 - 9
b = -5
Now we know that b = -5, we will substitute b = -5 into the equation that we found earlier, y = -9/7 x + b :
y = - 9/7x - 5
To make it more readable, we can multiply the equation by 7:
7y = -9x - 5
7y + 9x + 5 = 0
-----------------------------------------------------------
Answer : 7y + 9x + 5 = 0
-----------------------------------------------------------
Assign variables to you unknowns.
c = $ cars
t = $ trucks
6c + 3t = 4800
8c + t = 4600
use substitution or elimination to solve the system of equations.
using elimination.. multiply second equation by -3 and add to the other to combine equations into one.
6c + 3t = 4800
-3(8c + t = 4600)
---------------------------
-18c + 0 = -9000
c = 9000/18
c = 500 $
use this in one of the equations to find the cost of a truck.
8(500) + t = 4600
4000 + t = 4600
t = 4600 - 4000
t = 600 $
question asks
2(500) + 3(600) =
1000 + 1800 = 2800 $
Answer: sorry if i am wrong but i think it is c or a
Step-by-step explanation:
The correct answer is B. cm3
This is saying "centimeters cubed", and is true because you are multiplying 3 dimensions of centimeters, width*length*height, to get the answer. Thus, you are multiplying the numbers <em>and </em>the units. 30*30*25 and cm*cm*cm
Answer:
For mileages higher than 80 miles Company A will charge less than Company B
Step-by-step explanation:
Hi, to answer this question we have to write an inequality:
Company A charges $111 and allows unlimited mileage.
Company A =111
Company B has an initial fee of $55 and charges an additional $0.70 for every mile driven
Company B = 55+0.70m
Where m is the number of miles.
Company A has to charge less than Company B
a<b
111 < 55+0.70m
Solving for m
111-55 < 0.70 m
56 < 0.70m
56/0.70 < m
80 < m
For mileages higher than 80 miles Company A will charge less than Company B