For this case we use the formula of distance between points: d = root ((x2-x1) ^ 2 + (y2-y1) ^ 2) We have then: For AB: AB = root ((- 5 - (- 2)) ^ 2 + (-4-3) ^ 2) AB = 7.615773106 For AC: AC = root ((2 - (- 2)) ^ 2 + (-1-3) ^ 2) AC = 5.656854249 For BC: BC = root ((2 - (- 5)) ^ 2 + (-1 - (- 4)) ^ 2) BC = 7.615773106 The area is: A = root ((s) * (s-a) * (s-b) * (s-c)) Where, s = (a + b + c) / 2 Substituting values: s = (7.615773106 + 5.656854249 + 7.615773106) / 2 s = 10.44420023 A = root ((10.44420023) * (10.44420023-7.615773106) * (10.44420023-5.656854249) * (10.44420023-7.615773106)) A = 20 units ^ 2 Answer: The area of this triangle in square units is: A = 20 units ^ 2