Answer:
Step-by-step explanation
Hello!
Be X: SAT scores of students attending college.
The population mean is μ= 1150 and the standard deviation σ= 150
The teacher takes a sample of 25 students of his class, the resulting sample mean is 1200.
If the professor wants to test if the average SAT score is, as reported, 1150, the statistic hypotheses are:
H₀: μ = 1150
H₁: μ ≠ 1150
α: 0.05
![Z= \frac{X[bar]-Mu}{\frac{Sigma}{\sqrt{n} } } ~~N(0;1)](https://tex.z-dn.net/?f=Z%3D%20%5Cfrac%7BX%5Bbar%5D-Mu%7D%7B%5Cfrac%7BSigma%7D%7B%5Csqrt%7Bn%7D%20%7D%20%7D%20~~N%280%3B1%29)

The p-value for this test is 0.0949
Since the p-value is greater than the level of significance, the decision is to reject the null hypothesis. Then using a significance level of 5%, there is enough evidence to reject the null hypothesis, then the average SAT score of the college students is not 1150.
I hope it helps!
Answer:
"greatest common factor" (GCF) or "greatest common divisor" (GCD)
Step-by-step explanation:
Apparently, you're looking for the term that has the given definition. It is called the GCF or GCD, the "greatest common factor" or the "greatest common divisor."
_____
The GCF or GCD can be found a couple of ways. One way is to find the prime factors of the numbers involved, then identify the lowest power of each of the unique prime factors that are common to all numbers. The product of those numbers is the GCF.
<u>Example</u>:
GCF(6, 9)
can be found from the prime factors:
The unique factors are 2 and 3. Only the factor 3 is common to both numbers, and its lowest power is 1. Thus ...
GCF(6, 9) = 3¹ = 3
__
Another way to find the GCD is to use Euclid's Algorithm. At each step of the algorithm, the largest number modulo the smallest number is found. If that is not zero, the largest number is replaced by the result, and the process repeated. If the result is zero, the smallest number is the GCD.
GCD(6, 9) = 9 mod 6 = 3 . . . . . (6 mod 3 = 0, so 3 is the GCD)
Step-by-step explanation:
first step is to find the gradient of the line which "m" on the equation
gradient formula is y2 - y1 ÷ x2 - x1 = -½ as shown on the picture we substituted those points given
2nd step is to substitute on the equation y=mx+c
m= -½
y= 3 (you can choose any from those given points but in my case I chose point A)
x= -2
c= ? only unknown variable so we can can calculate it
substitute as shown on the picture to get c= 2
therefore our equation of the line will be y= -½x+2
8y+4 = 2(y-1)
8y+4 = 2y-2
8y-2y+4 = -2
6y+4 = -2
6y = -2-4
6y = -6
y = -1
Answer:
i think it is 5/8 6/12 3/4
Step-by-step explanation: