Answer: 4.7990 rounded to the nearest hundredth place is 4.8
2.5 mph is the answer I believe!
Answer:
cos(θ) = 3/5
Step-by-step explanation:
We can think of this situation as a triangle rectangle (you can see it in the image below).
Here, we have a triangle rectangle with an angle θ, such that the adjacent cathetus to θ is 3 units long, and the cathetus opposite to θ is 4 units long.
Here we want to find cos(θ).
You should remember:
cos(θ) = (adjacent cathetus)/(hypotenuse)
We already know that the adjacent cathetus is equal to 3.
And for the hypotenuse, we can use the Pythagorean's theorem, which says that the sum of the squares of the cathetus is equal to the square of the hypotenuse, this is:
3^2 + 4^2 = H^2
We can solve this for H, to get:
H = √( 3^2 + 4^2) = √(9 + 16) = √25 = 5
The hypotenuse is 5 units long.
Then we have:
cos(θ) = (adjacent cathetus)/(hypotenuse)
cos(θ) = 3/5
Answer: at 50 mph, she drove for 4 hours.
at 45 mph, she drove for 2 hours.
Step-by-step explanation:
Let t represent the time that she spent driving at 50 miles per hour.
Taylor took 6 hours to drive home from college for Thanksgiving break. This means that the time that she spent driving at 45 miles per hour is (6 - t) hours.
Distance = speed × time
Distance covered while driving 50 miles per hour is
50t
Distance covered while driving 45 miles per hour is
45(6 - t)
Since the total distance that she drove is 290 miles, it means that
50t + 45(6 - t) = 290
50t + 270 - 45t = 290
50t - 45t = 290 - 270
5t = 20
t = 20/5 = 4
At 45 miles per hour, she drove at
6 - 4 = 2 hours
I’m pretty sure the answer is 35