There 7 blocks of hundreds which means each such block is equivalent to 100.
There are 5 blocks of tens, which means each such block is equivalent to 10.
There are 8 blocks of ones, which means each such block is equivalent to 1.
The total of these blocks will be = 7(100) + 5(10) + 8(10) = 758
We can make several two 3-digit numbers from these blocks. An example is listed below:
Example:
Using 3 hundred block, 2 tens blocks and 4 ones block to make one number and remaining blocks to make the other number. The remaining blocks will be 4 hundred blocks, 3 tens blocks and 4 ones blocks
The two numbers we will make in this case are:
1st number = 3(100) + 2(10) + 4(1) = 324
2nd number = 4(100) + 3(10) + 4(1) = 434
The sum of these two numbers is = 324 + 434 = 758
i.e. equal to the original sum of all blocks.
This way changing the number of blocks in each place value, different 3 digit numbers can be generated.
Answer:
d
Step-by-step explanation:
d=(x, y) =(8,-4) so 4th quadrant
The time before they will arrive together next is given by the LCM of 16 and 18 which is 144 minutes
2:55 PM + 2 h 24 minutes = 5.19 PM
Its B
Answer:
GCF 4, LCM 80
Step-by-step explanation:
Since both 16 and 20 have two 2s as factor, their greatest common factor is 4.
The LCM is found by multiplying all of the remaining factors by the LCM:
16 still has (2 x 2), 20 still has (5), times the GCF (4) so 2 x 2 x 5 x 4 = 80.
The population of the town in 1960 is 48.80 thousands
<h3>How to determine the population in 1950?</h3>
The equation of the model is given as:
f(t) = 42e^(0.015t)
1960 is 10 years after 1950.
This means that:
t = 10
Substitute t = 10 in f(t) = 42e^(0.015t)
f(10) = 42e^(0.015 * 10)
Evaluate
f(10) = 48.80
Hence, the population of the town in 1960 is 48.80 thousands
Read more about exponential functions at:
brainly.com/question/11464095
#SPJ1