Answer:
Segment B C and Segment P N
Step-by-step explanation:
we know that
Line segments are congruent if they have the same length
In this problem
we have
Segment L.M ≅ Segment F.A
Segment M.N ≅ Segment A.B
Segment P.N ≅ Segment B.C
Segment P.J ≅ Segment C.D
Segment J.K ≅ Segment E.D
Segment K.K ≅ Segment F.E
therefore
The answer is
Segment B C and Segment P N
[1] The median to the base passes through the top point (0,b) and the bottom point (0,0) since it is going straight down. The slope formula is

So, the slope of the median is (b-0)/(0-0) = b/0. Technically, this is undefined, but let's leave it this way for now.
[2] The base passes through the left point (-a,0) and the right point (a,0). Its slope must be (0-0)/(a-(-a)) = 0.
[3] We now check if the slopes are negative reciprocals. Flipping b/0 over and putting a negative sign gives:
b/0 -> - 0/b = 0
So the slopes are negative reciprocals, which means the lines are perpendicular.
Answer:
Scale factor = ½
Step-by-step explanation:
The original image is the preimage = ∆ACB
The new image is the image = ∆DFE
The scale of factor of dilation = image/preimage = DF/AC
DF = 6 cm (given)
AC = 12 cm (given)
Plug in the values into the equation to find the scale factor of dilation:
Scale factor = 6/12
Scale factor = ½
Answer:
200 mg sodium is in 1 oz of chips and 50 mg sodium is in 1 cup of soda.
Step-by-step explanation:
Let x mg sodium is in 1 oz of chips and and y mg is in 1 cup of soda.
∵ Bryan ate 3 oz of chips and drank 2 cups of soda for a total of 700 mg of sodium.
i.e. 3x + 2y = 700 --------(1),
Jadyn ate 1 oz of chips and drank 3 cups of soda for a total of 350 mg of sodium.
i.e. x + 3y = 350 ---------(2),
Equation (1) - 3 × equation (2),
We get,
2y - 9y = 700 - 1050
-7y = -350

From equation (1),
3x + 2(50) = 700
3x + 100 = 700
3x = 700 - 100
3x = 600

Hence, 200 mg sodium is in 1 oz of chips and 50 mg sodium is in 1 cup of soda.
Answer:

Step-by-step explanation:
We are given the following information in the question.
The open interval: (- 18,22).
Let p belong to the given interval then p represents all the values belonging to the given interval.
Open Interval: An open interval is a interval that does not include the end points.
Thus, we can write:

is the required inequality form required.
That is p can take values greater than -18 and smaller than 22.