Answer:
<h3>.There are 36 squares........</h3>
Answer:
sin 5x cos x - cos 5x sin x = sin(4x)
Step-by-step explanation:
Given that the trigonometric expression,
sin 5x cos x - cos 5x sin x
Here we use the "sum and difference formulas"
Sum and Difference Formulas
sin(A+B)=sin A cos B + cos A sin B
sin(A-B)=sin A cos B - cos A sin B
cos(A+B)=cos A cos B - sin A sin B
cos(A-B)=cos A cos B + sin A sin B
So,
sin 5x cos x - cos 5x sin x = sin (5x - x)
sin 5x cos x - cos 5x sin x = sin(4x)
That's the final answer.
Answer:
<em>l = w + 3cm</em>
<em>l = w + 3cmp = 2l + 2w = 58cm</em>
<em>l = w + 3cmp = 2l + 2w = 58cm </em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 </em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 Plug back in:</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 Plug back in:l = (13cm) + 3cm = 16cm</em>
<em>l = w + 3cmp = 2l + 2w = 58cm Solve by substitution:2l + 2w = 58 ⇒ 2(w + 3) + 2w = 58⇒ 2w + 6 + 2w = 4w + 6 = 58⇒ 4w = 52 ⇒ w = 13 Plug back in:l = (13cm) + 3cm = 16cmStep-by-step explanation:</em>
I hope this helps you.
Possible unit is m³
<u>Step-by-step explanation:</u>
- The possible unit for volume of a cone is m³
- Volume of a cone = Base area × Height
- Here unit for volume will be square units and that of height will be in units. Together, they form cubic units.
- In the given options, the only unit that is in cubic form is m³
Hello,
To find the value of (1 - x)³ when x = -3, you just need to substitute x = -3 into the given expression.
(1 - (-3)³
(1 + 3)³
4³
64
Your final answer is D, 64. Hopefully it helps! :D