<span> 7x+2y=5;13x+14y=-1 </span>Solution :<span><span> {x,y} = {1,-1}</span>
</span>System of Linear Equations entered :<span><span> [1] 7x + 2y = 5
</span><span> [2] 13x + 14y = -1
</span></span>Graphic Representation of the Equations :<span> 2y + 7x = 5 14y + 13x = -1
</span>Solve by Substitution :
// Solve equation [2] for the variable y
<span> [2] 14y = -13x - 1
[2] y = -13x/14 - 1/14</span>
// Plug this in for variable y in equation [1]
<span><span> [1] 7x + 2•(-13x/14-1/14) = 5
</span><span> [1] 36x/7 = 36/7
</span><span> [1] 36x = 36
</span></span>
// Solve equation [1] for the variable x
<span><span> [1] 36x = 36</span>
<span> [1] x = 1</span> </span>
// By now we know this much :
<span><span> x = 1</span>
<span> y = -13x/14-1/14</span></span>
<span>// Use the x value to solve for y
</span>
<span> y = -(13/14)(1)-1/14 = -1 </span>Solution :<span><span> {x,y} = {1,-1}</span>
<span>
Processing ends successfully</span></span>
MN goes through
Slope:-
Slope of perpendicular line:-
Passes through k(3,-3)
Equation in point slope form
- y-y1=m(x-x1)
- y+3=-5(x-3)
- y+3=-5x+15
- y=-5x+12
Check one by one
- 0=-5(-12)+12=60+12=72
- 2=-5(2)+12=-10+12=2
Yes option B is correct
Your answer to this problem is 15
10 + 2 - 15 / 3 = 7
Hope it helped :)
Answer:
-56/9
Step-by-step explanation:
By Vieta's formulas,
$r + s = -\frac{4}{3}$ and $rs = \frac{12}{3} = 4.$ Squaring the equation $r + s = -\frac{4}{3},$ we get
$r^2 + 2rs + s^2 = \frac{16}{9}.$ Therefore,
$r^2 + s^2 = \frac{16}{9} - 2rs = \frac{16}{9} - 2 \cdot 4 = -\frac{56}{9}}$