Answer:
sunlight is the answer i think
<span>Determining the number chloride molecules that will result from this reaction requires we first determine the number of moles of arsenic and the number of moles of chlorine on hand.
1.587 grams of arsenic divided by its atomic weight of 74.92 grams per mole results in 0.0212 moles.
We do the same for chlorine. 2.755 grams of chlorine divided by 35.45 grams per mole gives us 0.106 moles.
0.106 moles divided by .0212 moles equals 5; therefore, the simplest formula of the chloride produced will be AsCl</span>₅<span>.</span>
This is an incomplete question, here is a complete question.
A 0.130 mole quantity of NiCl₂ is added to a liter of 1.20 M NH₃ solution. What is the concentration of Ni²⁺ ions at equilibrium? Assume the formation constant of Ni(NH₃)₆²⁺ is 5.5 × 10⁸
Answer : The concentration of
ions at equilibrium is, 
Explanation : Given,
Moles of
= 0.130 mol
Volume of solution = 1 L

Concentration of
= Concentration of
= 0.130 M
Concentration of
= 1.20 M

The equilibrium reaction will be:
![Ni^{2+}(aq)+6NH_3(aq)\rightarrow [Ni(NH_3)_6]^{2+}](https://tex.z-dn.net/?f=Ni%5E%7B2%2B%7D%28aq%29%2B6NH_3%28aq%29%5Crightarrow%20%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D)
Initial conc. 0.130 1.20 0
At eqm. x [1.20-6(0.130)] 0.130
= 0.42
The expression for equilibrium constant is:
![K_f=\frac{[Ni(NH_3)_6^{2+}]}{[Ni^{2+}][NH_3]^6}](https://tex.z-dn.net/?f=K_f%3D%5Cfrac%7B%5BNi%28NH_3%29_6%5E%7B2%2B%7D%5D%7D%7B%5BNi%5E%7B2%2B%7D%5D%5BNH_3%5D%5E6%7D)
Now put all the given values in this expression, we get:


Thus, the concentration of
ions at equilibrium is, 
Answer: I found the answer it is.
1 over 0n just look at it