122.0769 hopefully I helped you out
I don’t even know what to say.
Answer:
Step-by-step explanation:
Given is a table showing the weights, in hundreds of pounds, for six selected cars. Also shown is the corresponding fuel efficiency, in miles per gallon (mpg), for the car in city driving.
Weight Fuel eff. x^2 xy y^2
X Y
28 20 784 560 400
3 22 9 66 484
35 19 1225 665 361
32 22 1024 704 484
30 23 900 690 529
29 21 841 609 441
Mean 26.16666667 21.16666667 797.1666667 549 449.8333333
Variance 112.4722222 1.805555556
Covariance -553.8611111
r -0.341120235
Correlaton coefficient =cov (xy)/S_x S_y
Covariance (x,y) = E(xy)-E(x)E(y)
The correlation coefficient between the weight of a car and the fuel efficiency is -0.341
Answer:
23rd term of the arithmetic sequence is 118.
Step-by-step explanation:
In this question we have been given first term a1 = 8 and 9th term a9 = 48
we have to find the 23rd term of this arithmetic sequence.
Since in an arithmetic sequence

here a = first term
n = number of term
d = common difference
since 9th term a9 = 48
48 = 8 + (9-1)d
8d = 48 - 8 = 40
d = 40/8 = 5
Now 
= 8 + (23 -1)5 = 8 + 22×5 = 8 + 110 = 118
Therefore 23rd term of the sequence is 118.
Move to the right 2 points and move down two points