Answer:
it is
...................... true
Answer:
Energy
Explanation:
There are many different store and levels of energy which balance the mass so thats correct
Answer:
they carry out experiments to understand it
Explanation:
Scientists raise hypotheses which are tested by experiments made under controlled conditions in order to explain a particular topic. When a hypothesis is confirmed by the experimental data, the evidence obtained from this experiment provides the basis to increase the scientific knowledge about a particular issue. In consequence, experimentation can be considered as a critical step in the scientific method and research aims to advance knowledge of a particular phenomenon by confirming a hypothesis, which must be testable (i.e. verifiable as a result of further experimentations).
Answer:
1. The difference between the normal hemoglobin protein DNA sequence and the sickle cell hemoglobin DNA sequence is a base to base shift, in this case adenine (GAG) to thymine (GTG).
2. The difference affects the amino acid sequence of the protein by replacing glutamic acid (Glu) with valine (Val).
Explanation:
In sickle cell anemia, a change in the DNA nucleotide sequence is observed, where adenine is substituted by thymine, whose expression is the change in the amino acid sequence of globine β, incorporating valine instead of glutamic acid. This represents a molecular mutation - point mutation - by subtitution, which corresponds to missense mutation.
<u>Normal hemoglobin protein in a RBC</u>
DNA CTG ACT CCT GAG GAG AAG TCT
Amino acids Leu Thr Pro Glu Glu Lys Ser
<u>Sickle cell hemoglobin protein in a RBC</u>
DNA CTG ACT CCT <em>GTG</em> GAG AAG TCT
Amino acids Leu Thr Pro <em>Val</em> Glu Lys Ser
When GAG is transcribed to mRNA, the CUC codon is obtained, which codes for glutamic acid. Thymine substitution causes the DNA sequence to change to GTG, which is transcribed as CAC, the codon that encodes the amino acid valine. The <u>change from glutamic acid to valine in β-globin causes an altered hemoglobin, giving the abnormal erythrocytes observed in sickle cell disease</u>.
The different number of maternal and paternal chromosomes possible will be 8. that is option A is correct.
Chromosomes are defined as the genetic material within the body. They are thread like structures within the DNA and are made of proteins. In general human body has 23 pairs of chromosomes out of which 22 are numbered while 1 is the sex chromosome. Gametes are genetic material that are generally haploid in nature and they carry only one chromosome along with them. According to the question, there are 6 diploid chromosomes present which means there are 3 pairs of chromosomes. So each gametes will have a total number of 3 chromosomal pairs irrespective of their type that is maternal or paternal. Therefore combination of maternal and paternal chromosomes are given by
Combination = 2ⁿ where n is pair of chromosomes and here n = 3
Combination = 2³ = 8
Learn more about chromosomes at:
brainly.com/question/11912112
#SPJ4
Complete Question :
If an organism has a diploid number of 6 chromosomes, how many different combinations of maternal and paternal chromosomes are possible in its gametes?
A. 8
B. 12
C. 3
D. 16
E. 6