Answer:
The highest of its trajectory = 0.45 m
Option C is the correct answer.
Explanation:
Considering vertical motion of cat:-
Initial velocity, u = 3.44 sin60 = 2.98 m/s
Acceleration , a = -9.81 m/s²
Final velocity, v = 0 m/s
We have equation of motion v² = u² + 2as
Substituting
v² = u² + 2as
0² = 2.98² + 2 x -9.81 x s
s = 0.45 m
The highest of its trajectory = 0.45 m
Option C is the correct answer.
B) Moving with zero acceleration.
Explanation:
Acceleration is defined as the rate of change of the velocity per unit time:

In a velocity-time graph, this ratio corresponds to the slope of the curve. In fact:
(change in velocity) corresponds to the increase in the y-axis
(change in time) corresponds to the increase in the x-axis
So, acceleration corresponds to the slope of the curve in a velocity-time graph. For cart C, the slope is zero, therefore the acceleration is also zero.
Two atoms from column 1. Each would give 1 electron to the Oxygen. Oxygen will be 2- and each group 1 ion will be 1+
Complete Question:
Two small objects each with a net charge of Q (where Q is a positive number) exert a force of magnitude "F" on each other. We
replace one of the objects with another whose net charge is 4Q. The original magnitude of the force on the Q charge was "F"; what is the magnitude of the force on the Q charge now?
Answer:
4 F₀
Explanation:
Assuming that we can treat to both objects as point charges, we can find the force "F" that one charge exerts upon the other applying Coulomb´s law, as follows:
F₀ = K*Q₀² / r₁₂²
If we replace one of the charges by one with a 4Q₀ charge, the new value of F will be as follows:
F₁ = K*Q₀*4Q₀ / r₁₂² =( K*Q₀² / r₁₂²)* 4 = 4* F₀
This value is reasonable, as the electrostatic force is a linear - type one, so it is possible to use the superposition principle (we can get the force exerted by one charge on another without considering the ones due to another charges)