Answer:
When an object is immersed in water. it is pulled downwards due to gravitational pull of earth. Water exerts upward force on the object. This makes object rise up. This upward force is called buoyancy or upthrust.
Answer:
The force that you must exert on the balloon is 1.96 N
Explanation:
Given;
height of water, h = 4.00 cm = 4 x 10⁻² m
effective area, A = 50.0 cm² = 50 x 10⁻⁴ m²
density of water, ρ = 1 x 10³ kg/m³
Gauge pressure of the balloon is calculated as;
P = ρgh
where;
ρ is density of water
g is acceleration due to gravity
h is height of water
P = 1 x 10³ x 9.8 x 4 x 10⁻²
P = 392 N/m²
The force exerted on the balloon is calculated as;
F = PA
where;
P is pressure of the balloon
A is the effective area
F = 392 x 50 x 10⁻⁴
F = 1.96 N
Therefore, the force that you must exert on the balloon is 1.96 N
Answer:
C₁ = 3 pF
C₂ = 6 pF
Explanation:
Let the capacitance be C₁ and C₂.
For parallel combination
C₁ +C₂ = 9
For series combination


C₁ X C₂ = 18
( 9-C₂ )X C₂ = 18
C₂²- 9C₂ +18 = 0
C₂ = 6 or 3.
C₁ = 3 or 6.
C₁ = 3 pF
C₂ = 6 pF
This question involves the concepts of the law of conservation of energy, kinetic energy, and potential energy.
The height of the hill is "166.76 m".
<h3>LAW OF CONSERVATION OF ENERGY:</h3>
According to the law of conservation of energy at the highest point of the roller coaster ride, that is, the hill, the whole (maximum) kinetic energy of the roller coaster is converted into its potential energy:

where,
- h = height of the hill = ?
= maximum velocity = 57.2 m/s
- g = acceleration due to gravity = 9.81 m/s²
Therefore,

<u>h = 166.76 m</u>
Learn more about the law of conservation of energy here:
brainly.com/question/101125
Charges on the metal painted table-tennis ball gain charges from the positively charged rod and becomes positively charged