On the complex plane, the real component of a complex number is graphed along the horizontal axis while the imaginary component is graphed along the vertical axis.
Positive numbers go to the right on the real axis and up on the imaginary axis, and vice versa for negative numbers.
Therefore, the number -14-5i is in the 3rd quadrant because it graphed to the left of the origin and down.
Answer:
Yes, there is enough information to prove that the triangles are congruent.
SAS POSTULATE
Step-by-step explanation:
A) zeroes
P(n) = -250 n^2 + 2500n - 5250
Extract common factor:
P(n)= -250 (n^2 - 10n + 21)
Factor (find two numbers that sum -10 and its product is 21)
P(n) = -250(n - 3)(n - 7)
Zeroes ==> n - 3 = 0 or n -7 = 0
Then n = 3 and n = 7 are the zeros.
They rerpesent that if the promoter sells tickets at 3 or 7 dollars the profit is zero.
B) Maximum profit
Completion of squares
n^2 - 10n + 21 = n^2 - 10n + 25 - 4 = (n^2 - 10n+ 25) - 4 = (n - 5)^2 - 4
P(n) = - 250[(n-5)^2 -4] = -250(n-5)^2 + 1000
Maximum ==> - 250 (n - 5)^2 = 0 ==> n = 5 and P(5) = 1000
Maximum profit =1000 at n = 5
C) Axis of symmetry
Vertex = (h,k) when the equation is in the form A(n-h)^2 + k
Comparing A(n-h)^2 + k with - 250(n - 5)^2 + 1000
Vertex = (5, 1000) and the symmetry axis is n = 5.
Distance = speed x time
2.257 x 9.111 = 20.563527 or 20
Answer:
15 yards
Step-by-step explanation: