1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lunna [17]
3 years ago
8

A theatre holds 1200 people when full.If it is 80% full,how many people are present

Mathematics
1 answer:
CaHeK987 [17]3 years ago
4 0

0.8 times 1200 is 960, which is the number of people when the theatre is 80% full.

You might be interested in
Question 1: Are the following two monomials multiplied correctly? <br> Yes or no
Anastaziya [24]
The answer is yes. I think that I’m right
6 0
2 years ago
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Fill in the blanks below in order to justify whether or not the mapping shown represents a function.
Hitman42 [59]

Answer:

not a function.

Step-by-step explanation:

the x value/set a has to have 1 line from each but the -3 has 2 lines, therefore not a function

7 0
2 years ago
The implications of a classical lras curve are that
ElenaW [278]

economies are always at full efficiency

b is the right answer but a is also a right answer

4 0
3 years ago
Can someone help me with these questions For the first 4 I need to write the word sentence as an equation
tangare [24]
1. 3y=27
2. x-4=3
3. p+8=17
4. 1/2q=14
3 0
2 years ago
Other questions:
  • Solving linear systems of substitution
    5·1 answer
  • Please help me with this questions
    10·1 answer
  • What is the solution to the system of equations below? y = negative three-fourths x + 3 and y = –12
    10·2 answers
  • What is the common factor of this term 25a^3b^2=(5a^2b^2) (?)
    14·1 answer
  • Find the number with the given prime factorization.<br> 2*2*5*7*11
    7·1 answer
  • A saving account pays 3.6% per annum simple interest Heidi puts £400 into the account, how much will she have in the account aft
    9·1 answer
  • 8×6+(12-4)÷2<br> Options: 58, 52, 56, or 28
    14·1 answer
  • Can someone please help me?
    10·1 answer
  • HELP ME I GOT 67 POINTS THAT I WILL GIVE AND ILL GIVE YOU BRAINIST
    5·2 answers
  • The length of a tunnel is 450 miles. On a map of the tunnel, 1 inch represents 60 miles. What is the length of the tunnel on the
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!