m∠DWC=138°, ∠AWB = 138°, ∠AWD = 42°, ∠BWC = 42°
Solution:
Line
intersect at a point W.
Given
.
<em>Vertical angle theorem:</em>
<em>If two lines intersect at a point then vertically opposite angles are congruent.</em>
<u>To find the measure of all the angles:</u>
∠AWB and ∠DWC are vertically opposite angles.
Therefore, ∠AWB = ∠DWC
⇒ ∠AWB = 138°
Sum of all the angles in a straight line = 180°
⇒ ∠AWD + ∠DWC = 180°
⇒ ∠AWD + 138° = 180°
⇒ ∠AWD = 180° – 138°
⇒ ∠AWD = 42°
Since ∠AWD and ∠BWC are vertically opposite angles.
Therefore, ∠AWD = ∠BWC
⇒ ∠BWC = 42°
Hence the measure of the angles are
m∠DWC=138°, ∠AWB = 138°, ∠AWD = 42°, ∠BWC = 42°.
Answer:
He can print 62 documents
Step-by-step explanation:
500/8=62.5
He can print only 62 documents because he cannot print half a document.
Hope this helps!
If not, I am sorry.
Answer: 13 is c im pretty sure and 14 is a im think hope fully it helps
Step-by-step explanation:
The answer to this is 36.
Well you are given the equation so let's plug in for kaylib and see how many miles she can see
distance = sqrt [(3 * height) / 2]
d = sqrt [(3 *48) / 2]
d = sqrt (144 / 2)
d = sqrt (72)
d = sqrt (3 * 3 * 2 * 2 * 2)
d = 6 * sqrt (2)
You you did not list Addisons height but I will say she is at x feet above sea level. we plug in x for height:
d = sqrt [(3x) / 2]
It it says how much farther for Addison which means she can see farther. to find difference we just subtract kaylibs distance from Addison. so:
sqrt [(3x) / 2] - 6 * sqrt (2)
plug in your x and use a calculator to get a decimal approximation