The Laplace transform of the given initial-value problem
is mathematically given as

<h3>What is the Laplace transform of the given initial-value problem? y' 5y = e4t, y(0) = 2?</h3>
Generally, the equation for the problem is mathematically given as
![&\text { Sol:- } \quad y^{\prime}+s y=e^{4 t}, y(0)=2 \\\\&\text { Taking Laplace transform of (1) } \\\\&\quad L\left[y^{\prime}+5 y\right]=\left[\left[e^{4 t}\right]\right. \\\\&\Rightarrow \quad L\left[y^{\prime}\right]+5 L[y]=\frac{1}{s-4} \\\\&\Rightarrow \quad s y(s)-y(0)+5 y(s)=\frac{1}{s-4} \\\\&\Rightarrow \quad(s+5) y(s)=\frac{1}{s-4}+2 \\\\&\Rightarrow \quad y(s)=\frac{1}{s+5}\left[\frac{1}{s-4}+2\right]=\frac{2 s-7}{(s+5)(s-4)}\end{aligned}](https://tex.z-dn.net/?f=%26%5Ctext%20%7B%20Sol%3A-%20%7D%20%5Cquad%20y%5E%7B%5Cprime%7D%2Bs%20y%3De%5E%7B4%20t%7D%2C%20y%280%29%3D2%20%5C%5C%5C%5C%26%5Ctext%20%7B%20Taking%20Laplace%20transform%20of%20%281%29%20%7D%20%5C%5C%5C%5C%26%5Cquad%20L%5Cleft%5By%5E%7B%5Cprime%7D%2B5%20y%5Cright%5D%3D%5Cleft%5B%5Cleft%5Be%5E%7B4%20t%7D%5Cright%5D%5Cright.%20%5C%5C%5C%5C%26%5CRightarrow%20%5Cquad%20L%5Cleft%5By%5E%7B%5Cprime%7D%5Cright%5D%2B5%20L%5By%5D%3D%5Cfrac%7B1%7D%7Bs-4%7D%20%5C%5C%5C%5C%26%5CRightarrow%20%5Cquad%20s%20y%28s%29-y%280%29%2B5%20y%28s%29%3D%5Cfrac%7B1%7D%7Bs-4%7D%20%5C%5C%5C%5C%26%5CRightarrow%20%5Cquad%28s%2B5%29%20y%28s%29%3D%5Cfrac%7B1%7D%7Bs-4%7D%2B2%20%5C%5C%5C%5C%26%5CRightarrow%20%5Cquad%20y%28s%29%3D%5Cfrac%7B1%7D%7Bs%2B5%7D%5Cleft%5B%5Cfrac%7B1%7D%7Bs-4%7D%2B2%5Cright%5D%3D%5Cfrac%7B2%20s-7%7D%7B%28s%2B5%29%28s-4%29%7D%5Cend%7Baligned%7D)



In conclusion, Taking inverse Laplace tranoform
![L^{-1}[y(s)]=\frac{1}{9} L^{-1}\left[\frac{1}{s-4}\right]+\frac{17}{9} L^{-1}\left[\frac{1}{s+5}\right]$ \\\\](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5By%28s%29%5D%3D%5Cfrac%7B1%7D%7B9%7D%20L%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B1%7D%7Bs-4%7D%5Cright%5D%2B%5Cfrac%7B17%7D%7B9%7D%20L%5E%7B-1%7D%5Cleft%5B%5Cfrac%7B1%7D%7Bs%2B5%7D%5Cright%5D%24%20%5C%5C%5C%5C)

Read more about Laplace tranoform
brainly.com/question/14487937
#SPJ4
Answer:
67
Step-by-step explanation:
You have to use fractions to show your work and I'm not going to do that but just know that it is the answer.
<h3>Explanation:</h3>
GCF: the greatest common factor of numerator and denominator is a factor that can be removed to reduce the fraction.
<em>Example</em>
The numerator and denominator of 6/8 have GCF of 2:
6/8 = (2·3)/(2·4)
The fraction can be reduced by canceling those factors.
(2·3)/(2·4) = (2/2)·(3/4) = 1·(3/4) = 3/4
___
LCM: the least common multiple of the denominators is suitable as a common denominator. Addition and subtraction are easily performed on the numerators when the denominator is common.
<em>Example</em>
The fractions 2/3 and 1/5 can be added using a common denominator of LCM(3, 5) = 15.
2/3 + 1/5 = 10/15 + 3/15 = (10+3)/15 = 13/15
The answer of this problem would be A: Y = -1 because the line needs to be horizontal.