Answer:
Resort A has more consistent snowfall, so it shows less variation. However, the snowfall for Resort B has a higher median, and the interquartile range is higher (not larger), so it is more likely that Kevin will find a good snowfall at Resort B.
Thanks:) I just did it edg
Step-by-step explanation:
Answer:
No
Step-by-step explanation:
A rational number is a number that can be expressed as a fraction p/q where p and q are integers and q!=0. A rational number p/q is said to have numerator p and denominator q. Numbers that are not rational are called irrational numbers. The real line consists of the union of the rational and irrational numbers. The set of rational numbers is of measure zero on the real line, so it is "small" compared to the irrationals and the continuum.
The set of all rational numbers is referred to as the "rationals," and forms a field that is denoted Q. Here, the symbol Q derives from the German word Quotient, which can be translated as "ratio," and first appeared in Bourbaki's Algèbre (reprinted as Bourbaki 1998, p. 671).
Any rational number is trivially also an algebraic number.
Examples of rational numbers include -7, 0, 1, 1/2, 22/7, 12345/67, and so on. Farey sequences provide a way of systematically enumerating all rational numbers.
The set of rational numbers is denoted Rationals in the Wolfram Language, and a number x can be tested to see if it is rational using the command Element[x, Rationals].
The elementary algebraic operations for combining rational numbers are exactly the same as for combining fractions.
It is always possible to find another rational number between any two members of the set of rationals. Therefore, rather counterintuitively, the rational numbers are a continuous set, but at the same time countable.
C. x³-4x²-16x+24.
In order to solve this problem we have to use the product of the polynomials where each monomial of the first polynomial is multiplied by all the monomials that form the second polynomial. Afterwards, the similar monomials are added or subtracted.
Multiply the polynomials (x-6)(x²+2x-4)
Multiply eac monomial of the first polynomial by all the monimials of the second polynomial:
(x)(x²)+x(2x)-(x)(4) - (6)(x²) - (6)(2x) - (6)(-4)
x³+2x²-4x -6x²-12x+24
Ordering the similar monomials:
x³+(2x²-6x²)+(-4x - 12x)+24
Getting as result:
x³-4x²-16x+24
Answer:
-35/4
Step-by-step explanation:
Answer:
Step-by-step explanation:
In order to find an average you need to add all the numbers you have and then divide your sum by the amount of numbers you added.
195+52+206=432
432 divided by 3= 151
That is the answer, 151.